Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38139
Title: | 有限體上之超橢圓曲線的同構類 The Isomorphism Classes of Hyperelliptic Curves over Finite Fields with Characteristic 2 |
Authors: | Tse-Chung Yang 楊策仲 |
Advisor: | 朱樺(Huah Chu) |
Keyword: | 超橢圓曲線,超橢圓曲線密碼系統,同構類, hyperelliptic curves,hyperelliptic curve cryptosystem,isomorphism classes, |
Publication Year : | 2005 |
Degree: | 碩士 |
Abstract: | 在這篇論文裡,我們得到了有限體F_q上之超橢圓曲線在genus為4且特徵值等於2的同構類個數。我們得到了以下的公式:
N=2q^7+q^4-q^3 若2整除m N=2q^7+q^4-q^3+4q^2-4q+4 若6整除m N=2q^7+q^4-q^3+4q^2-4q+16 若2整除m,但若6不整除m ,其中q=2^m。這個結果可以被用在超橢圓函數密碼系統(HECC)之上。 In this thesis we will find the number of isomorphism classes of hyperelliptic curves of genus 4 over a finite field F_q with characteristic 2. We prove the formula of the number N of isomorphism classes as the following: N=2q^7+q^4-q^3 if 2 divides m N=2q^7+q^4-q^3+4q^2-4q+4 if 6 divides m N=2q^7+q^4-q^3+4q^2-4q+16 if 2 divides m,but 6 does not divide m. These results can be used in the classification problems and the hyperelliptic curve cryptosystems. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38139 |
Fulltext Rights: | 有償授權 |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-94-1.pdf Restricted Access | 433.61 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.