請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3796完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉懷勝 | |
| dc.contributor.author | Yao-Chang Yang | en |
| dc.contributor.author | 楊曜彰 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:53Z | - |
| dc.date.available | 2018-08-31 | |
| dc.date.available | 2021-05-13T08:36:53Z | - |
| dc.date.copyright | 2016-08-31 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-05 | |
| dc.identifier.citation | Abdel-Megeed, A. (2004). Psychrophilic degradation of long chain alkanes: VDM Verlag Dr. Muller Aktiengesellschaft & Co. KG.
Abramowicz, D. A. (1990). Aerobic and anaerobic biodegradation of PCBs: a review. Critical Reviews in Biotechnology, 10(3), 241-251. Aeckersberg, F., Rainey, F. A., & Widdel, F. (1998). Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Archives of Microbiology, 170(5), 361-369. Aislabie, J., Saul, D. J., & Foght, J. M. (2006). Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 10(3), 171-179. Al-Araji, L., Rahman, R. N. Z. R. A., Basri, M., Salleh, A. B., Nasaruddin, N. M., Harikrishna, K., . . . Adnan, N. (2007). Microbial Surfactant. Asia Pacific J. Molec. Biol. Biotechnol, 15(3), 99-105. Alexander, M. (1999). Biodegradation and Bioremediation. Gulf Professional Publishing. Allard, A.-S., & Neilson, A. H. (1997). Bioremediation of organic waste sites: A critical review of microbiological aspects. International Biodeterioration & Biodegradation, 39(4), 253-285. Alloway, B., & Ayres, D. (1998). Chemical principles of environmental pollution. Water Air and Soil Pollution, 102(1), 209. Alvarez, H. M. (2003). Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. International Biodeterioration & Biodegradation, 52(1), 35-42. Ashraf, W., Mihdhir, A., & Colin Murrell, J. (1994). Bacterial oxidation of propane. FEMS Microbiology Letters, 122(1-2), 1-6. Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews, 45(1), 180. Atlas, R. M., & Bartha, R. (1992). Hydrocarbon biodegradation and oil spill bioremediation. Advances in Microbial Ecology, 12, 287-338. Atlas, R., & Bragg, J. (2009). Bioremediation of marine oil spills: when and when not– the Exxon Valdez experience. Microbial Biotechnology, 2(2), 213-221. Atteia, O., Estrada, E. D. C., & Bertin, H. (2013). Soil flushing: a review of the origin of efficiency variability. Reviews in Environmental Science and Bio/Technology, 12(4), 379-389. Babel, W. (1994). Bioremediation of ecosystems by microorganism. Approaches for exploiting upper limits and widening bottlenecks.Bioremediation: the Tokyo, 94, 101-115. Bartha, R., & Atlas, R. M. (1977). The microbiology of aquatic oil spills. Advances in Applied Microbiology, 22, 225-266. Bell, K., Philp, J., Aw, D., & Christofi, N. (1998). The genus Rhodococcus. Journal of Applied Microbiology, 85(2), 195-210. Berthe-Corti, L., & Ebenhöh, W. (1999). A mathematical model of cell growth and alkane degradation in Wadden Sea sediment suspensions. Biosystems,49(3), 161-189. Berthe‐Corti, L., & Fetzner, S. (2002). Bacterial Metabolism of n‐Alkanes and Ammonia under Oxic, Suboxic and Anoxic Conditions. Acta Biotechnologica, 22(3‐4), 299-336. Binazadeh, M., Karimi, I. A., & Li, Z. (2009). Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzyme and Microbial Technology, 45(3), 195-202. Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74(1), 63-67. Bossier, P., & Verstraete, W. (1996). Triggers for microbial aggregation in activated sludge. Applied Microbiology and Biotechnology, 45(1), 1-6. Bouchez-Naitali, M., Blanchet, D., Bardin, V., & Vandecasteele, J. P. (2001).Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology, 147(9), 2537–2543. Bouchez-Naitali, M., Rakatozafy, H., Marchal, R., Leveau, J. Y., & Vandecasteele, J. P. (1999). Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. Journal of Applied Microbiology, 86(3), 421-428. Bouwer, E. J., & Zehnder, A. J. B. (1993). Bioremediation of organic compounds--putting microbial metabolism to work. Trends in Biotechnology, 11(8), 360-367. Bowen, W. R., Lovitt, R. W., & Wright, C. J. (2001). Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae. Journal of Colloid and Interface Science, 237(1), 54-61. Britton, L. N. (1984). Microbial Degradation of Organic Compounds: Marcel Dekker New York. Busch, P. L., & Stumm, W. (1968). Chemical interactions in the aggregation of bacteria bioflocculation in waste treatment. Environmental Science & Technology, 2(1), 49-53. Bustamante, M., Durán, N., & Diez, M. C. (2012). Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Journal of Soil Science and Plant Nutrition, 12(4), 667-687. Calabrese, E. J., P. T. Kostecki and E. J. Fleischer (1988). Soils contaminated by petroleum: environmental and public health effects. John Wiley and Sons Inc. Calleja, G. B. (1984). Microbial Aggregation: CRC Press, Boca Raton, Fla. Callier, L., Clozel, B., & Nowak, C. (2002). Méthodes de recherche de l’origine de pollution (s) dans les sols ou dans les eaux souterraines. BRGM RP-51260-Fr. Camilli, R., Reddy, C. M., Yoerger, D. R., Van Mooy, B. A. S., Jakuba, M. V., Kinsey, J. C., . . . Maloney, J. V. (2010). Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon. Science, 330(6001), 201-204. Canter, L. W., and Knox, R. C. (1986). Ground water pollution control. Lewis Publishers, Chelsea, Mich. Carvalho, C. C. C. R., & Fonseca, M. M. R. (2004). Solvent toxicity in organic-aqueous systems analysed by multivariate analysis. Bioprocess and Biosystems Engineering, 26(6), 361-375. Carvalho, C. C. C. R., & Fonseca, M. M. R. (2005). Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiology Ecology, 51(3), 389-399. Carvalho, C. C. C. R., Parreno-Marchante, B., Neumann, G., da Fonseca, M. M. R., & Heipieper, H. J. (2005). Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Applied Microbiology and Biotechnology, 67(3), 383-388. Casella, S., & Payne, W. J. (1996). Potential of denitrifiers for soil environment protection. FEMS Microbiology Letters, 140(1), 1-8. Chang, M. C., Huang, C. R., & Shu, H. Y. (2000). Effects of surfactants on extraction of phenanthrene in spiked sand. Chemosphere, 41(8), 1295-1300. Chang, Y. I., & Su, C. Y. (2003). Flocculation behavior of Sphingobium chlorophenolicum in degrading pentachlorophenol at different life stages. Biotechnology and Bioengineering, 82(7), 843-850. Chaudhry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiological Reviews, 55(1), 59-79. Christofi, N., Ivshina, I. B., Kuyukina, M. S., & Philp, J. C. (1998). Biological treatment of crude oil contaminated soil in Russia. Geological Society, London, Engineering Geology Special Publications, 14(1), 45-51. Christofi, N., & Ivshina, I. B. (2002). Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology, 93(6), 915-929. Collins, M. D., Goodfellow, M., & Minnikin, D. E. (1982). Fatty acid composition of some mycolic acid-containing coryneform bacteria. Microbiology, 128(11), 2503-2509. Coon, M. J. (2005). Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochemical and Biophysical Research Communications, 338(1), 378-385. Cooney, J. J., Silver, S. A., & Beck, E. A. (1985). Factors influencing hydrocarbon degradation in three freshwater lakes. Microbial Ecology, 11(2), 127-137. Cravo-Laureau, C., Grossi, V., Raphel, D., Matheron, R., & Hirschler-Rea, A. (2005). Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Applied and Environmental Microbiology, 71(7), 3458–3467. Deng, S., Bai, R., Hu, X., & Luo, Q. (2003). Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Applied Microbiology and Biotechnology, 60(5), 588-593. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64. Deshpande, S., Shiau, B. J., Wade, D., Sabatini, D. A., & Harwell, J. H. (1999). Surfactant selection for enhancing ex situ soil washing. Water Research, 33(2), 351-360. Dibble, J. T., & Bartha, R. (1979). Effect of environmental parameters on the biodegradation of oil sludge. Applied and Environmental Microbiology, 37(4), 729-739. Ehrenreich, P., Behrends, A., Harder, J., & Widdel, F. (2000). Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Archives of Microbiology, 173(1), 58-64. Fiechter, A. (1992). Biosurfactants: moving towards industrial application. Trends in Biotechnology, 10, 208-217. Finnerty, W. R. (1992). The biology and genetics of the genus Rhodococcus. Annual Reviews in Microbiology, 46(1), 193-218. Finnerty, W. R. (1994). Biosurfactants in environmental biotechnology. Current Opinion in Biotechnology, 5(3), 291-295. Fraaije, M. W., Kamerbeek, N. M., van Berkel, W. J. H., & Janssen, D. B. (2002). Identification of a Baeyer–Villiger monooxygenase sequence motif. FEBS Letters, 518(1), 43-47. Fritsche, W., & Hofrichter, M. (2000). Aerobic degradation by microorganisms. In: Klein J, editor. Environmental Processes- Soil Decontamination. Weinheim, Germany: Wiley-VCH; 2000. pp. 146–155. Fujita, M., Ike, M., Tachibana, S., Kitada, G., Kim, S. M., & Inoue, Z. (2000). Characterization of a bioflocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids. Journal of Bioscience and Bioengineering, 89(1), 40-46. Fukuda, K., Söderman, O., Shinoda, K., & Lindman, B. (1993). Microemulsions formed by alkyl polyglucosides and an alkyl glycerol ether. Langmuir, 9(11), 2921-2925. Gallego, J. L. R. (2009). Bioremediation of Petroleum Hydrocarbons in Cold Regions. The Geographical Journal, 175, 323-323. Gibson, D. T. (1984). Microbial Degradation of Organic Compounds: Marcel Dekker New York. Golwer, A. (1983). Underground purification capacity. Ground Water in Water Resource Planning, 2, 1063-1072. Gong, X.-Y., Luan, Z.-K., Pei, Y.-S., & Wang, S.-G. (2003). Culture Conditions for Flocculant Production by Paenibacillus polymyxa BY-28. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 38(4), 657 - 669. Goswami, P., & Singh, H. D. (1991). Different Modes of Hydrocarbon Uptake by 2 Pseudomonas Species. Biotechnology and Bioengineering, 37(1), 1-11. Haines, J. R., & Alexander, M. (1974). Microbial Degradation of High-Molecular-Weight Alkanes. Applied Microbiology, 28(6), 1084-1085. Harayama, S., Kishira, H., Kasai, Y., & Shutsubo, K. (1999). Petroleum biodegradation in marine environments. Journal of Molecular Microbiology and Biotechnology, 1(1), 63-70. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials,169(1), 1-15. Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., & de Bont, J. A. M. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 12(10), 409-415. Hua, Z., Chen, J., Lun, S., & Wang, X. (2003). Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Research, 37(17), 4143-4150. Huang, L., Ma, T., Li, D., Liang, F., Liu, R. L., & Li, G. (2008). Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis. Marine Pollution Bulletin, 56(10), 1714-1718. Huesemann, M. H. (1995). Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environmental Science & Technology, 29(1), 7-18. Iwabuchi, N., Sunairi, M., Anzai, H., Morisaki, H., & Nakajima, M. (2003). Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in Rhodococcus. Colloids and Surfaces B: Biointerfaces, 30(1-2), 51-60. Ivshina, I. B., Kuyukina, M. S., Ritchkova, M. I., Philp, J. C., Cunningham, C. J., & Christofi, N. (2001). Oleophilic biofertilizer based on a Rhodococcus surfactant complex for the bioremediation of crude oil-contaminated soil.Contaminated Soil, Sediment and Water, 2001, 20-24. Kanaly, R. A., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182(8), 2059-2067. Kim, I. S., Foght, J. M., & Gray, M. R. (2002). Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+ 14He. Biotechnology and Bioengineering, 80(6), 650-659. Korda, A., Santas, P., Tenente, A., & Santas, R. (1997). Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Applied Microbiology and Biotechnology, 48(6), 677-686. Koronelli, T. V. (1996). Principles and methods for raising the efficiency of biological degradation of hydrocarbons in the environment: review. Applied Biochemistry and Microbiology, 32(6), 519-525. Kurane, R., & Tomizuka, N. (1992). Towards New-Biomaterial Produced by Microorganism-Bioflocculant and Bioabsorbent. Nippon Kagaku Kaishi, (5), 453-463. Kuyukina, M. S., Ivshina, I. B., Makarov, S. O., Litvinenko, L. V., Cunningham, C. J., & Philp, J. C. (2005). Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environment International, 31(2), 155-161. Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156. Laha, S., Tansel, B., & Ussawarujikulchai, A. (2009). Surfactant–soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. Journal of Environmental Management, 90(1), 95-100. Lang, S., & Philp, J. C. (1998). Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek, 74(1), 59-70. Larkin, M. J., Kulakov, L. A., & Allen, C. C. R. (2005). Biodegradation and Rhodococcus-masters of catabolic versatility. Current Opinion in Biotechnology, 16(3), 282-290. Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiology and Molecular Biology Reviews, 54(3), 305-315. Lendvay, J. M., Löffler, F. E., Dollhopf, M., Aiello, M. R., Daniels, G., Fathepure, B. Z., ... & Krajmalnik-Brown, R. (2003). Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environmental Science & Technology, 37(7), 1422-1431. Li, X.J., Li, P.J., Lin, X., Gong, Z.Q., Fan, S.X., Zheng, L., & Verkhozina, E.A. (2008). Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in soils from typical oil-sewage irrigation area, Northeast China. Environ. Monit. Assess. 143, 257–265. Lindtner, S., Kroiss, H., & Nowak, O. (2004). Benchmarking of municipal waste water treatment plants (an Austrian project). Water Science and Technology,50(7), 265-271. Liu, C. W., Liang, M. S., Chen, Y. C., Sayavedra-Soto, L. A., & Liu, H. S. (2012). Biodegradation of n-alkanes at high concentration and correlation to the accumulation of H+ ions in Rhodococcus erythropolis NTU-1. Biochemical Engineering Journal, 63, 124-128. Liu, C. W., & Liu, H. S. (2010). Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors. Process Biochemistry, 46, 202–209. Logan, B. E., & Hunt, J. R. (1988). Bioflocculation as a microbial response to substrate limitations. Biotechnology and Bioengineering, 31(2), 91-101. Lovley, D. R. (1991). Dissimilatory Fe (III) and Mn (IV) reduction. Microbiological Reviews, 55(2), 259-287. Ly, M. H., Naitali-Bouchez, M., Meylheuc, T., Bellon-Fontaine, M. N., Le, T. M., Belin, J. M., & Wache, Y. (2006). Importance of bacterial surface properties to control the stability of emulsions. International Journal of Food Microbiology, 112(1), 26-34. Madsen, E. (1991). Determining in situ bioremediation, facts and challenges. Environ. Sci. Technol, 25, 1663-1673. Malik, A., Sakamoto, M., Ono, T., & Kakii, K. (2003). Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge. Journal of Bioscience and Bioengineering, 96(1), 10-15. Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: a review. Journal of Hazardous Materials,285, 419-435. Margesin, R. and Schinner, F. (1999), Biological decontamination of oil spills in cold environments. J. Chem. Technol. Biotechnol., 74: 381–389. Margesin, R., Zimmerbauer, A., & Schinner, F. (1999). Soil lipase activity–a useful indicator of oil biodegradation. Biotechnology Techniques, 13(12), 859-863. McCarthy, D. F. (1982). Essentials of soil mechanics and foundations: Basic Geotechnics. Reston, Va: Reston Pub. Co. McKenna, E., & Kallio, R. (1971a). Microbial metabolism of the isoprenoid alkane pristane. Proceedings of the National Academy of Sciences of the United States of America, 68(7), 1552. McKenna, E., & Kallio, R. (1971b). Microbial metabolism of the isoprenoid alkane pristane. Proceedings of the National Academy of Sciences of the United States of America, 68(7), 1552-1554. Mehling, A., Kleber, M., & Hensen, H. (2007). Comparative studies on the ocular and dermal irritation potential of surfactants. Food and Chemical Toxicology, 45(5), 747-758. Morgan, P., & Watkinson, R. J. (1989). Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds.FEMS Microbiology Reviews, 5(4), 277-299. Morgan, P., & Watkinson, R. J. (1994). Biodegradation of components of petroleum. Biochemistry of Microbial Degradation, 1-31. Mousset, E., Oturan, M. A., Van Hullebusch, E. D., Guibaud, G., & Esposito, G. (2014). Soil washing/flushing treatments of organic pollutants enhanced by cyclodextrins and integrated treatments: state of the art. Critical Reviews in Environmental Science and Technology, 44(7), 705-795. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60(1), 371-380. Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183-198. Nakata, K., & Kurane, R. (1999). Production of an extracellular polysaccharide bioflocculant by Klebsiella pneumoniae. Bioscience, Biotechnology, and Biochemistry, 63(12), 2064-2068. Neu, T. R. (1996). Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiology and Molecular Biology Reviews, 60(1), 151–166. Nicholas, R. B. (1987). Biotechnology in hazardous waste disposal: an unfulfilled promise. ASM News, 53, 138-142. Nieder, M. A. T. T. H. E. W., & Shapiro, J. A. M. E. S. (1975). Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. Journal of Bacteriology, 122(1), 93-98. Niescher, S., Wray, V., Lang, S., Kaschabek, S. R., & Schlomann, M. (2006). Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Applied Microbiology and Biotechnology, 70(5), 605-611. Olofsson, A. C., Zita, A., & Hermansson, M. (1998). Floc stability and adhesion of green-fluorescent-protein-marked bacteria to flocs in activated sludge. Microbiology, 144(2), 519-528. Pandey, G., & Jain, R. K. (2002). Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Applied and Environmental Microbiology,68(12), 5789-5795. Peng, F., Liu, Z., Wang, L., & Shao, Z. (2007). An oil degrading bacterium: Rhodococcus erythropolis strain 3C 9 and its biosurfactants. Journal of Applied Microbiology, 102(6), 1603-1611. Pignatello, J. J. (1998). Soil organic matter as a nanoporous sorbent of organic pollutants. Advances in Colloid and Interface Science, 76, 445-467. Pirnik, M., Atlas, R., & Bartha, R. (1974). Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. Journal of Bacteriology, 119(3), 868-878. Prak, D. J. L. (2007). Solubilization of nitrotoluenes in micellar nonionic surfactant solutions. Chemosphere, 68(10), 1961-1967. Ram, N. M., Bass, D. H., Falotico, R., & Leahy, M. (1993a). A decision framework for selecting remediation technologies at hydrocarbon-contaminated sites. J. Soil Contam., 2(2), 167–189. Ram, N. M., Bass, D. H., Falotico, R., & Leahy, M. (1993b). A decision framework for selecting remediation technologies at hydrocarbon-contaminated sites. Soil and Sediment Contamination: An International Journal, 2(2), 167-189. Ratledge, C. (1988). Products of hydrocarbon-microorganism interaction. Biodeterioration, 7, 219-236. Riser-Roberts, E. (1998). Remediation of petroleum contaminated soils: biological, physical, and chemical processes: CRC. Roane, T. M., Josephson, K. L., & Pepper, I. L. (2001). Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Applied and Environmental Microbiology, 67(7), 3208-3215. Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology, 11(10), 2477-2490. Ron, E. Z., & Rosenberg, E. (2002). Biosurfactants and oil bioremediation.Current Opinion in Biotechnology, 13(3), 249-252. Rosenberg, E., & Ron, E. (1999). High-and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 52(2), 154-162. Roudier, P. (2005). Techniques de réhabilitation des sites et sols pollués. Ed. Techniques Ingénieur. Rueter, P., Rabus, R., Wilkest, H., Aeckersberg, F., Rainey, F. A., Jannasch, H. W., & Widdel, F. (1994). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372(6505), 455-458. Sannasi, P., Kader, J., Othman, O., & Salmijah, S. (2009). Physical growth and biomass characterization of bacterial cells exposed to Cd (II), Cr (VI), Cu (II), Ni (II), and Pb (II). Journal of Environmental Research And Development, 4(1), 8-18. Santa Anna, L. M., Soriano, A. U., Gomes, A. C., Menezes, E. P., Gutarra, M. L., Freire, D. M., & Pereira, N. (2007). Use of biosurfactant in the removal of oil from contaminated sandy soil. Journal of Chemical Technology and Biotechnology, 82(7), 687-691. Sayavedra‐Soto, L. A., Chang, W. N., Lin, T. K., Ho, C. L., & Liu, H. S. (2006). Alkane Utilization by Rhodococcus Strain NTU‐1 Alone and in Its Natural Association with Bacillus fusiformis L‐1 and Ochrobactrum sp. Biotechnology Progress, 22(5), 1368-1373. Scholze, R. J., Smith, E. D., Bandy, J. T., Wu, Y. C., & Basilico, J. V. (1988). Biotechnology for degradation of toxic chemicals in hazardous wastes. Schunck, W. H., Mauersberger, S., Huth, J., Riege, P., & Müller, H. G. (1987). Function and regulation of cytochrome P-450 in alkane-assimilating yeast. Archives of Microbiology, 147(3), 240-244. So, C. M., Phelps, C. D., & Young, L. (2003). Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Applied and Environmental Microbiology, 69(7), 3892–3900. Sokatch, J. R., Bacterial Physiology andMetabolism, Academic Press, New York, 1969, 180. Stegmann, R., Brunner, G., Calmano, W., & Matz, G. (Eds.). (2013). Treatment of contaminated soil: fundamentals, analysis, applications. Springer Science & Business Media. Takagi, H., & Kadowaki, K. (1985). Purification and chemical properties of a flocculant produced by Paecilomyces. Agricultural and Biological Chemistry, 49(11), 3151-3164. Takeda, M., Kurane, R., Koizumi, J., & Nakamura, I. (1991). A protein bioflocculant produced by Rhodococcus erythropolis. Agricultural and Biological Chemistry, 55(10), 2663-2664. Thomas, J. M., Yordy, J. R., Amadoy, J. A., & Alexander, M. (1986). Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl Environ Microbiol, 52(2), 290–296. Ulrici, W. (2000). Contaminated soil areas, different countries and contaminants, monitoring of contaminants. Environmental Process II. Soil Decontamination Biotechnology, 11, 5-42. Van Beilen, J., Li, Z., Duetz, W., Smits, T., & Witholt, B. (2003). Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology, 58(4), 427-440. Van Beilen, J. B., & Funhoff, E. G. (2007). Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology, 74(1), 13-21. Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549. Van Stempvoort, D., & Biggar, K. (2008). Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Regions Science and Technology, 53(1), 16-41. Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163-1172. Vik, E., Bardos, P., Brogan, J., Edwards, D., Gondi, F., Henrysson, T., . . . Nathanail, P. (2001). Towards a framework for selecting remediation technologies for contaminated sites. Land Contamination and Reclamation, 9(1), 119-127. Villaverde, J., Maqueda, C., & Morillo, E. (2005). Improvement of the desorption of the herbicide norflurazon from soils via complexation with β-cyclodextrin. Journal of Agricultural and Food Chemistry, 53(13), 5366-5372. Volkering, F., Breure, A., & Rulkens, W. (1997). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8(6), 401-417. Von Lau, E., Gan, S., Ng, H. K., & Poh, P. E. (2014). Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environmental Pollution, 184, 640-649. Vreysen, S., & Maes, A. (2005). Remediation of a Diesel Contaminated, Sandy-Loam Soil Using Low Concentrated Surfactant Solutions (5 pp). Journal of Soils and Sediments, 5(4), 240-244. Wang, W. H., Hoag, G. E., Collins, J. B., & Naidu, R. (2013). Evaluation of surfactant-enhanced in situ chemical oxidation (S-ISCO) in contaminated soil. Water, Air, & Soil Pollution, 224(12), 1-9. Watkinson, R. J., & Morgan, P. (1990). Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation, 1(2), 79-92. Weerawardena, A., Boyd, B. J., Drummond, C. J., & Furlong, D. N. (2000). Removal of a solid organic soil from a hard surface by glucose-derived surfactants: effect of surfactant chain length, headgroup polymerisation and anomeric configuration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169(1), 317-328. Wentzel, A., Ellingsen, T. E., Kotlar, H. K., Zotchev, S. B., & Throne-Holst, M. (2007). Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology, 76(6), 1209-1221. Westgate, S., Bell, G., & Halling, P. J. (1995). Kinetics of Uptake of Organic Liquid Substrates by Microbial-Cells - a Method to Distinguish Interfacial Contact and Mass-Transfer Mechanisms. Biotechnology Letters, 17(10), 1013-1018. Westlake, D. W. S., Jobson, A. M., & Cook, F. D. (1978). In situ degradation of oil in a soil of the boreal region of the Northwest Territories. Canadian Journal of Microbiology, 24(3), 254-260. Whyte, L. G., Bourbonnière, L., Bellerose, C., & Greer, C. W. (1999). Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic. Biomeridiation Journal, 3(1), 69-80. Whyte, L. G., Hawari, J., Zhou, E., Bourbonniere, L., Inniss, W. E., & Greer, C. W. (1998). Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Applied and Environmental Microbiology, 64(7), 2578-2584. Whyte, L., Slagman, S., Pietrantonio, F., Bourbonniere, L., Koval, S., Lawrence, J., . . . Greer, C. (1999). Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Applied and Environmental Microbiology, 65(7), 2961–2968. Wodzinski, R. S., & Johnson, M. J. (1968). Yields of Bacterial Cells from Hydrocarbons. Appl Microbiol, 16(12), 1886-1891. Yadav, J. S., & Reddy, C. A. (1993). Degradation of Benzene, Toluene, Ethylbenzene, and Xylenes (Btex) by the Lignin-Degrading Basidiomycete Phanerochaete-Chrysosporium. Applied and Environmental Microbiology, 59(3), 756-762. Yang, K., Zhu, L., & Xing, B. (2006). Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology, 40(13), 4274-4280. 王詩雯(2014)。利用Rhodococcus erythropolis NTU-1 細胞破乳化(碩士論文)。化學工程學系。國立台灣大學。 張緯農(2003)。利用混合菌株(TN-4)處理異十九烷之研究(碩士論文)。化學工程學系。國立台灣大學。 張緯農(2009)。利用Rhodococcus erythropolis進行碳氫化合物生物降解與細胞聚集現象之研究(博士論文)。化學工程學系。國立台灣大學。 張蘭英、劉娜、孫立波(2007)。現代環境微生物技術(2 ed)。清華大學出版社。 梁茂實(2007)。微生物生物復育時細胞聚集與氫離子釋放的應用(碩士論文)。化學工程學系。國立台灣大學。 黃武良(1999)。石油-大自然孕育千萬年的珍藏。地球科學園地。 劉志文(2007)。微生物生物復育過程中細胞聚集現象之研究(碩士論文)。化學工程學系。國立台灣大學。 盧至人(2002)。現地生物復育技術。台灣土壤及地下水環境保護協會簡訊, 5, 3-5。 盧曉鳳(2000)。油品之生物分解--煉油廠廢水之實際應用(碩士論文)。化學工程學系。國立台灣大學。 謝惠敏(2011)。利用Rhodococcus erythropolis NTU-1細胞聚集現象移除正十六烷(碩士論文)。化學工程學系。國立台灣大學。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3796 | - |
| dc.description.abstract | 本研究目的主要在於探討如何利用土壤清洗的方式移除土壤中的烷類污染,並利用Rhodococcus erythropolis NTU-1能夠生物降解並包覆烷類的特性,處理溶液中的烷類,達到生物復育土壤的目的。
研究顯示,本實驗所使用的液態礦物培養基能夠清洗被烷類污染的土壤。以研究中的實驗條件為例,土壤粒徑大小為20/50 mesh、正十六烷添加量為4 ml n-C16/g soil的0.5 g土壤,經分析土壤中會含有3.2 ml n-C16/g soil,利用100 ml培養基以批次攪拌清洗10秒後,培養基中約含800 ppmv n-C16。 為了避免土壤中的水溶性物質,如有機酸或礦物質,在土壤清洗的過程中溶於清洗所使用的培養基,影響NTU-1於培養基中的生長,所以本實驗以自來水與去離子水預清洗土壤並烘乾,才將土壤用於後續實驗操作。 將清洗過土壤的培養基植入NTU-1培養72小時,初始植菌量為5 ml礦物培養基菌液(OD600nm約為1.0)。72小時之後,NTU-1可以透過生物降解與物理包覆移除95%培養基中的正十六烷。 探討影響培養基清洗效果的因素時,提高培養基的溫度有最好的清洗效果。以本研究為例,土壤粒徑大小為20/50 mesh、正十六烷添加量為4 ml n-C16/g soil的0.5 g土壤,利用100 ml培養基與污染土壤一起煮沸5分鐘,以沸騰時培養基液體的流動取代攪拌清洗。培養基能夠清洗土壤中約20%的正十六烷含量,進一步培養NTU-1達72小時後,經分析,NTU-1能移除培養基中約95%的正十六烷。 | zh_TW |
| dc.description.abstract | For bioremediation, we focused on how to apply soil washing method with MSM (mineral salt medium) to wash n-hexadecane (n-C16) on soil. Furthermore, we apply Rhodococcus erythropolis NTU-1 (NTU-1) biofloccules and biodegradation for n-hexadecane removal in MSM.
Firstly, results showed that nearly 800 ppmv n-C16 can be washed by 100 ml MSM from 0.5 g contaminated soil of which the particle size is 20/50 mesh and the added volume of pollutant is 4 ml n-C16/g soil. By analyzing with GC-FID, soil will contain 3.2 ml n-C16/g soil after added n-C16 as pollutant. Secondly, to avoid hydrosoluble compounds in soil being desolved in MSM during soil washing, which may constrain the biodegradation ability of NTU-1, we have to pre-wash soil. Being pre-washed by both tap water and DI water, soil can be used for subsequent experiments. After incubated in MSM used to wash contaminated soil for 72 hours, NTU-1 will remove approximately 95% of total n-C16 in MSM by both biodegradation and biofloccules. Last but not least, the washing effectiveness of MSM can be promoted by increasing the temperature of MSM. Results showed almost 20% of total n-C16 can be removed from 0.5 g soil whose particle size is 20/50 mesh and the added volume of pollutant is 4 ml n-C16/g soil during soil washing at 100℃. After 72 hours NTU-1 incubation, almost 95% of total n-C16 in MSM will be removed. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:53Z (GMT). No. of bitstreams: 1 ntu-105-R03524076-1.pdf: 3512058 bytes, checksum: fb665de1c67bce487b946145ed4c7e22 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究目的與論文綱要 3 第二章 文獻回顧 4 2.1 石油碳氫化合物簡介及其對環境和人類之影響 4 2.2 處理石油碳氫化合物污染之方法 6 2.3 以微生物處理石油碳氫化合物 13 2.3.1 生物復育簡介 13 2.3.2 微生物攝取碳氫化合物之模式 18 2.3.3 微生物分解碳氫化合物之方式 26 2.4 微生物降解碳氫化合物之代謝途徑 30 2.4.1直鏈烷之氧化機制 30 2.4.2支鏈烷之氧化機制 34 2.4.3烯烴類及環烷類之氧化機制 36 2.5實驗菌株Rhodococcus erythropolis介紹 40 2.5.1 Rhodococcus菌屬介紹 40 2.5.2 Rhodococcus erythropolis特性與應用 43 2.6 微生物之細胞聚集現象 47 2.7 土壤清洗在土壤復育中的應用 49 2.8 微生物在土壤復育中的應用 53 第三章 實驗材料與方法 56 3.1 實驗材料 56 3.1.1 實驗菌株 56 3.1.2 實驗藥品與儀器 58 3.2 培養基組成與配製 59 3.2.1 液態礦物培養基 59 3.2.2 菌株保存培養基 62 3.2.3 菌株活化培養基 63 3.2.4 計數平板培養基 63 3.3 實驗方法 64 3.3.1 菌株的活化及生長曲線 64 3.3.2 礦物培養基菌液製作 65 3.3.3 正十六烷污染土壤的製備 66 3.3.4 清洗正十六烷污染的土壤 67 3.3.5 氣相層析儀之條件設定 72 3.3.6 正十六烷校正曲線 73 3.3.7 以NTU-1處理培養基中的正十六烷 74 第四章 實驗結果與討論 76 4.1 土壤實驗前的預清洗 77 4.2 清洗被正十六烷污染的土壤 81 4.2.1 篩選適合實驗的土壤的粒徑大小 81 4.2.2 土壤的污染程度 83 4.2.3 清洗被正十六烷污染土壤的方法 86 4.3 以NTU-1處理培養基中的正十六烷 90 4.4 提升液態礦物培養基對污染土壤的清洗效果 97 4.4.1 正十六烷含量計算 97 4.4.2 重複清洗污染土壤 98 4.4.3 重複使用液態礦物培養基清洗污染土壤 101 4.4.4 重複使用底部液態礦物培養基清洗污染土壤 104 4.4.5 酸鹼值對液態礦物培養基清洗效果的影響 105 4.4.6 溫度對液態礦物培養基清洗效果的影響 107 4.4.7 鹽類濃度對液態礦物培養基清洗能力的影響 112 4.4.8 以溫度提升培養基清洗效果並利用NTU-1移除正十六烷 114 4.4.9 討論 117 第五章 結論 118 第六章 參考文獻 121 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物復育 | zh_TW |
| dc.subject | 土壤清洗 | zh_TW |
| dc.subject | Rhodococcus erythropolis NTU-1 | zh_TW |
| dc.subject | 生物降解 | zh_TW |
| dc.subject | Rhodococcus erythropolis NTU-1 | en |
| dc.subject | Soil washing | en |
| dc.subject | Biodegradation | en |
| dc.subject | Bioremediation | en |
| dc.title | 以土壤清洗復育土壤並以NTU-1移除溶液中正十六烷 | zh_TW |
| dc.title | Implementing Soil Washing for Soil Remediation and Using Rhodococcus erythropolis NTU-1 for the Treatment of the Residual Solution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江佳穎,鄭玉佳 | |
| dc.subject.keyword | 土壤清洗,Rhodococcus erythropolis NTU-1,生物復育,生物降解, | zh_TW |
| dc.subject.keyword | Soil washing,Rhodococcus erythropolis NTU-1,Bioremediation,Biodegradation, | en |
| dc.relation.page | 134 | |
| dc.identifier.doi | 10.6342/NTU201601949 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 3.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
