請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊東漢 | |
| dc.contributor.author | Yu-Peng Tsai | en |
| dc.contributor.author | 蔡鈺芃 | zh_TW |
| dc.date.accessioned | 2021-06-13T15:36:23Z | - |
| dc.date.available | 2008-07-16 | |
| dc.date.copyright | 2008-07-16 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-10 | |
| dc.identifier.citation | 1. R.R. Tummala, E.J. Rymaszewaki and A.G. Klopfenstein, “Microelectronics Packaginng Handbook”, Chapman & Hall, New York, NY, 1997
2. J. S Hwang, Z.Guo and G. Lucey, “ Strengthened Solder Materials for Electronic Packaging, ” Surface Mount International Conference San Jose, California, USA, Auguet/September, pp. 45-51, 1993. 3. Wei Ren, Zhengfang. Qian and Sheng Liu 'Scale Effect on Packaging Materials', Proceedings of the 49th Electronic Components and Technology Conference, 1999. 4. W. Ren, Z. Qian, M. Lu, S. Liu and D. Shangguan, “Thermal Mechanical Properties of Two Solder Alloys,” in Applications of Experimental Mechanics to Electronic Packaging, ASME, EEP-Vol.22, AMD-Vol.226, 1997, pp.125~130 5. John H. L. et al., “Thermal Cycling Aging Effect on Microstructural and Mechanical Properties of a Single PBGA Joint Specimen”, IEEE Trans., 2001 6. 黃振賢, 機械材料(修訂二版), pp. 102-107 7. P.T Vianco and D.R Frear, Issues in the replacement of lead-bearing solder, J.O.M., 45(7), 14-19, 1993 8. Cook, Steve, ”Get the lead out”, Clean Tech, v 4, n 11, November/December, 2004, p 28-29 9. N. C. Lee, “Lee-Free Soldering-Where the World is going”, Adv. Microelectron., Vol.26, Sept./Oct., 1999, pp.29-35 10. 林智堯, 無鉛化發展與趨勢, 綠色設計電子報, 第九期, 2004 11. Blair, Howard D., Pan Tsung-Yu, Nicholson John M., Intermetallic compound growth on Ni, Au/Ni, and Pd/Ni substrates with Sn/Pb, Sn/Ag, and Sn solders Source: Proceedings - Electronic Components and Technology Conference, 1998, p 259-267 12. Z. Miric, and A. Grusd, “Lead-Free Alloys,”Soldering & Surface Mount Technology, Vol. 10, No. 1, 1998, pp.19-25 13. Carol. Handwerker, “Lead-Free Solders: A Change in the Electronics infrastructure”, Circuitree, Sep.1999, pp2-8 14. Suraski, D., Seelig, K, “The current status of lead-free solder alloys.“, Electronics Packaging Manufacturing, IEEE Transactions on Volume 24, Issue 4, Oct. 2001 Page(s):244 - 248 15.W. Yang and R. W. Messler, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, Journal of Electronic Materials, 23, (1994), pp. 765-772 16. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding”, IEEE Trans. on Comp.,Pac. and Manu. Tech., 13, 4, 1990, pp.736-742 17. P. Biocca, “Global Update on Lead-Free Solders”, SMT, June, (1999), pp. 64-67 18. K. Warashina, Y. Kariya, Y. Hirata and M. Otsuka, “Thermal Fatigue Damage of Quad Flat Pack Lead and Sn-3.5Ag-X(X=Bi and Cu) Solder Joints”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, 1999, pp. 626-631. 19. K. Suganume, “Interfacial Phenomena in Lead-free Soldering”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, 1999, pp. 620-625. 20. F.L. Zhu, H.H. Zhang, R.F. Guan, S. Liu, Y.B. Yang, ”Investigation of Temperature and Strain Rate Behavior of Lead-free Solder Sn96.5Ag3.5”, Proceeding of 13th IPFA 2006, Singapore, pp. 239-243 21. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding”, IEEE Trans, CHMT, PartB, Vol. 13, No. 4, Dec. 1990, pp. 736-742. 22. C. M. Miller, I. E. Anderson and S. F. Smith, “Journal of Electronic Materials”, Vol. 23, No 7, 1994 , pp. 595-601. 23. L. Y. Tommi, H. Steen, and A. Forsten, “Development and Validation of a Lead-Free Alloys for Solder Paste Applications”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part C, Vol. 20, NO. 3, July 1997, p194-198. 24. M. E. Loomans, and M. E. Fine, ”Metallurgical and Materials Transactions A”, Vol. 31A, April 2000, p1155-1162. 25. Yoshiharu Kariya, and Masahisa Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloys”, Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp. 1229-1235 26. A Grusd, Proceeding of the Surface Mount International Conference (Edina, MN:Surface Mount Technology Association, 1998), pp.648-666 27. M. A. Matin, W.P. Vellinga, and M.G.D. Geers, “Microstructural stability and failure modes in eutectic Sn-Ag-Cu solder”, 5th. Int. Conj on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, EuroSimE2004, 2004, pp. 337-340 28. Dr. Benlih Huang, Dr. Arnab Dasgupta and Dr. Ning-Cheng Lee, “Effect of SAC Composition on Soldering Performance”, Electronics Manufacturing Technology Symposium, 2004. IEEE/CPMT/SEMI 29th International, Jul 14-16, 2004, pp.45 – 55 29. Kimihiro Yamanaka, Yutaka Tsukadaa, and Katsuaki Suganuma, “Electromigration effect on solder bump in Cu/Sn–3Ag–0.5Cu/Cu system”, Volume: 55, Issue: 10, November, 2006, pp. 867-870 30. K.S. Kim, S.H. Huh, K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys”, Materials Science and Engineering A333 (2002), pp.106-114 31. Zhao Xiao-yan, Zhao Mai-qun, Cui Xiao-qing, Xu Tian-han, Tong Ming-xin“Effect of cerium on microstructure and mechanical properties of Sn-Ag-Cu system lead-free solder alloys”, Transaction of Nonferrous Metals Society of China 17(2007), pp. 805-810 32. Z.G. Chen, Y.W. Shi, Z.D. Xia, and Y.F. Yan, “Study on the Microstructure of a Novel Lead-Free Solder Alloy SnAgCu-RE and Its Soldered Joints”, Journal of Electronic Materials, Vol. 31, No. 10, 2002, pp.1122-1128 33. Z.G. Chen, Y.W. Shi, Z.D. Xia, and Y.F. Yan, “Properties of Lead-Free Solder SnAgCu Containing Minute Amounts of Rare Earth”, Journal of Electronic Materials, Vol. 32, No. 4, April, 2003, pp.235-243 34. D.Q. Yu, J. Zhao, L. Wang, “Improvement on the microstrucure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements”, Journal of Alloys and Compounds 376, 2004, pp.170-175 35. Hu Hao, Yaowu Shi, Zhidong Xia, Yongping Lei, and Fu Guo, “Microstructure Evolution of SnAgCuEr Lead-free Solders Under High Temperature Aging”, Journal of ELECTRONIC MATERIALS, Vol. 37, No. 1, 2008, pp.2- 8 36. C. M. L. Wu, A Y. W. Wong, “Rare-earth additions to lead-free electronic solders”, J Mater Sci: Mater Electron, 2007, 18, pp.77-91 37. Zhang Keke, Cheng Guanghui, Yu Yangchun, Yan Yanfu, Man Hua, “Effect of Rare Earths on Microstructure and Properties of Sn2.0Ag0.7CuRE Solder Alloy”, IEEE. 2005 6th International Conference on Electronic Packaging Technology 38. Y. Zhu, H. Kang, P. Qu, H. Fang, Y. Qian, Journal of Rare Earths 17 (1999) 290. 39. L. Wang, D.Q. Yu, J. Zhao, M.L. Huang,” Improvement of wettability and tensile property in Sn–Ag–RE lead-free solder alloy”, Volume: 56, Issue: 6, November, 2002, pp. 1039-1042 40. M. McCormack, S. Jin, G.W Kammlott, “The design of new, Pb-free solder alloys with improved properties”, Electronics and the Environment, 1995. ISEE., Proceedings of the 1995 IEEE International Symposium on 1-3, May, 1995, pp.171 – 176 41. M. McCormack, G. W. Kammlott, H. S. Chen, and S. Jin, “New lead-free, Sn-Ag-Zn-Cu solder alloy with improved mechanical properties”, Appl. Phys. Lett., 65, September, 1994, pp. 1233-1235 42. A.A. El-Daly, A.M. Abdel-Daiem, A.N. Abdel-Rahman, S.M. Mohammed, “Effect of Zn-addition and structural transformation on the creep behaviour of Pb–10 wt.% Sn alloy”, Materials Chemistry and Physics Volumn:85, 2004, pp. 163–170 43. Isabel de Sousa, Donald W. Henderson, Luc Patry, Sung K Kang, D.-Y. Shih, “The Influence of Low Level Doping on the Thermal Evolution of SAC Alloy Solder Joints with Cu Pad Structures”, IEEE Proceedings ofElectronic Components and Technology Conference, San Diego, CA, May-June 2006, pp. 1454-1461 44. Mustafa Kamal A El Said Gouda, “Effect of zinc additions on structure and properties of Sn–Ag eutectic lead-free solder alloy”, J Mater Sci: Mater Electron , 19, 2008, pp. 81–84 45. John H. Lau, John H. L. Pang, Ning-Cheng Lee, and Luhua Xu, “Material Properties and Intermetallic Compounds of Sn3wt%AgO.5wt%CuO.O19wt%Ce (SACC)”, Electronic Components and Technology Conference, 2007 46.Weimin Xiao, Yaowu Shi, Yongping Lei, Zhidong Xia, and Fu Guo, “Comparative Study of Microstructures and Properties of Three Valuable SnAgCuRE Lead-Free Solder Alloys”, Journal of ELECTRONIC MATERIALS, Vol. 35, No. 5, 2006, pp.1095-1103 47. Chih-Kuang Lin, De-You Chu, “Creep rupture of lead-free Sn-3.5Ag and Sn-3.5Ag-0.5Cu solders”, Journal of Material Science:Materials In Electronics 16, 2005, pp.355-365 48. 莊東漢, 材料破損分析(Failure Analysis), pp.476-479 49. D.K. Joo, Jin Yu, and S.W. Shin, “Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders”, Journal of Electronic Materials, Vol. 32, No. 6, 2003, pp.541-547 50. H.J.Forst, M.F.Ashby, In:Deformation Mechanism Maps. Oxford:Pergamon Press, 1982 51. Robinson, S.L. and O.D. Sherby, Mechanical behaviour of polycrystalline tungsten at elevated temperature. Acta Met., 1969, 17, pp. 109 52. P. Adeva, G. Caruana, O.A. Ruano, and M. Torralba, Mater. Sci. Eng. A 194, 17, 1995 53. O.D. Sherby and C.M. Young, Proc. J.E. Dorn Symp. (Metals Park, OH: ASM, 1975), pp. 497 54. John H.L. Pang, B.S. Xiong and T.H. Low, ”Creep and Fatigue Characterization of Lead Free 95.5Sn-3.8Ag-0.7Cu Solder”, 2004 Electronic Components and Technology Conference, pp.1333-1337 55. A.Schubert, H Walter, R. Dudek, B. Michel, ” Thermo-Mechanical Properties and Creep Deformation of Lead-Containing and Lead-Free Solders”, 2001 International Symposium on Advanced Packaging Materials, pp.129-134 56. Ikuo Shohji, Tomohiro Yoshida, Takehiko Takahashi, Susumu Hioki, “Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity”, Materials Science and Engineering A366, 2004, pp.50–55 57. I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Mater. Trans. 43 (2002), pp.1854. 58. W.J. Plumbridge, C.R. Gagg, J. Mater. Sci.: Mater. Electronics 10, 1999, pp. 461 59. Y. Kariya, W.J. Plumbridge, in: Proceedings of the Seventh Symposium on Microjoining and Assembly Technology in Electronics, Yokohama, Japan, 1–2 February 2001, The Japan Welding Society, Japan, 2001, pp. 383 60. K. Atumi, Y. Kariya, M. Otsuka, in: Proceedings of the Sixth Symposium on Microjoining and Assembly Technology in Electronics, Yokohama, Japan, 3–4 February 2000, The Japan Welding Society, Japan, 2000, pp. 281 61. J. Yu, D.K. Joo, S.W. Shin, Acta Materialia 50, 2002, pp. 4315 62. R.J. McCabe, M.E. Fine, Metal. Mater. Trans. A 33A, 2002, pp. 1531 63. J.D. Meakin, E. Klokholm, Trans. Metall. Soc. AIME 233, 1965, pp. 2069 64. Noboru Hidaka, Hirohiko Watanabe, Masayuki Yoshiba, Masayoshi Shimoda, Tatsuhiko Asai, and Masahiro Ono, “Creep Behavior and Microstructure of Sn-Ag-Cu-Ni-Ge Lead-free Solder Alloy”, Materials Science and Technology (MS&T) 2006: PRODUCT MANUFACTURING, pp. 185-197 65. R.Ninomaya, Y.Nakahara, and T.Takemoto, “Microstructure and Mechanical Property of Sn-Ag-Bi-In Solder”, Proc. of 9th Symposium on Microjoining and Assembly Technology in Electronics (The Japan Welding Society, 1998), pp. 249-252 66. I.Shohji et al.,“Mechanical Properties of Low-melting Lead-Free Solders”, Proc. of 9th Symposium on Microjoining and Assembly Technology in Electronics, (The Japan Welding Society, 2003), pp. 229-234 67. Z.Chen, Y.Shi, and Z.Xia, “Constitutive Relations on Creep for SnAgCuRE Lead-Free Solder Joints”, J. Electron. Mater., Vol. 33, No.9, 2004, pp. 964-971 68. F.Ochoa, X.Deng, and N.Chawla, “Effects of Cooling Rate on Creep Behavior of a Sn-3.5Ag Alloy”, J. Electron. Mater., Vol.33, 2004, No.12, pp. 1596-1607 69. Min He, Sylvester N. Ekpenuma, and Viola L. Acoff, “Microstructure and Creep Deformation of Sn-Ag-Cu-Bi/Cu Solder Joints”, Journal of Electronic Materials, Vol. 37, No. 3, 2008, pp. 300-306 70. H. Hao,J. Tian, Y.W. Shi, Y.P. Lei,and Z.D. Xia,“Properties of Sn3.8Ag0.7Cu Solder Alloy with Trace Rare Earth Element Y Additions”, Journal of Electronic Materials, Vol. 36, No. 7, 2007, pp.766-774 71. Ying Ding, Chunqing Wang, Mingyu Li, Han-Sur Bang, “Evolution of deformation near the triple point of grain junctions in Sn-based solders during in situ tensile test”, Materials Letters , Volume: 59, Issue: 6, March, 2005, pp. 697-700 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37644 | - |
| dc.description.abstract | 本研究主要利用高溫拉伸試驗測試無鉛銲錫的機械性質,以及觀察材料內部的潛變特徵,無鉛銲錫的材料主要為Sn-3wt%Ag-0.5wt%Cu,另外添加0.05wt%Ce、0.5wt%Ce與0.2wt%Zn,比較不同合金的特性;溫度的範圍介在30℃-150℃之間,而應變速率則為1×10-3mm/sec與1×10-4mm/sec。無鉛銲料為電子產業的開發重點,未來隨著環保意識的抬頭,有毒物質的禁用是不可避免的。在電子產品輕薄化的前提之下,熱應力的累積以及機械力的作用,將造成更大的影響,高溫低應力的環境將使材料更易發生潛變破壞。實驗的過程將分成兩個主軸進行,第一部份為拉伸破斷的微結構觀察,第二部份為拉伸試驗所得到之結果分析。
研究結果顯示,在高溫拉伸的環境下,Sn-Ag-Cu合金生成的介金屬化合物,易成為微裂縫和孔洞的源頭,裂縫發生在三粒界交叉處,視為潛變的重要特徵。藉由微結構之觀察,添加0.05wt%Ce可以細化晶粒,並抑制介金屬化合物(Ag3Sn和Cu6Sn5)的成長,同時偏析在樹枝狀晶粒間的稀土析出物,具有強化材料的作用,提升材料的抗潛變能力;添加0.5wt%Ce的Sn-Ag-Cu合金易生成過大的稀土析出物CeSn3,此介金屬化合物析出在晶界處,易造成應力過度集中,加速材料的破壞,故添加過量稀土造成不良的影響。另外添加0.2wt%Zn有效抑制稀土析出物的產生,並具有細化晶粒的效果。透過拉伸試驗之結果,同樣的銲錫材料,隨著測試溫度的上升和應變速率的減緩,抗拉強度呈現下降的趨勢;而低溫下添加其他元素對機械性質的影響要高於高溫下的作業環境,添加微量稀土可提升其抗拉強度,過量則會使抗拉強度下降,再添加Zn則使強度上升近未添加稀土的母合金強度,但不如添加微量稀土的母合金強度;固定應變速率下,合金的伸長量在30℃-150℃維持穩定,不會有明顯的變化。 | zh_TW |
| dc.description.abstract | The tensile properties of Sn-3wt%Ag-0.5wt%Cu-0.05 wt%Ce, Sn-3wt%Ag-0.5wt%Cu-0.05 wt%Ce and Sn-3wt%Ag-0.5wt%Cu-0.05 wt%Ce-0.2wt%Zn were investigated and compared with those of a Sn-Ag-Cu solder. The tensile strength of each solder decreases with increasing test temperature, and decreasing strain rate.The ductility of each lead-free solder keeps stable value in the strain rate from 1×10-4mm/s to 1×10-3mm/s and in the test temperature ranging from 30℃ to 150℃. Coarsing β-Sn grains and dendrite grains are formed in Sn-3Ag-0.5Cu, especially bigger Ag3Sn and Cu6Sn5 intermetallic compounds(IMCs) were found in Sn-3Ag-0.5Cu alloy.With addition of different content rare earth(Ce) element the dendrite grains were refined, at the same time, Ag3Sn and Cu6Sn5 intermetallics were finer according to the adsorption affection of the active rare earth elements.It was found easier formation and faster growth of voids at the coarsing IMCs by the lower tensile rate at a higher temperature.Voids and cavities were observed along grain boundaries in Sn-3Ag-0.5Cu-0.5Ce.More coursing rare earth IMCs had the same affection, they would resulted in excess stress concentration, the crack and cavity might be nucleated near the impurity particles along the grain boundaries. Adding adequate Ce could improved mechanical properties, the tensile strength were enhanced, but excess adding brought negative affection.In addition, the alloy with the addition of trace Zn, it restricted the growth of Ce IMCs. The mechanical properties were also enhanced. All these results indicated that adding trace rare earth element and Zn was an efficient way to develop tensile properties for the new solders. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T15:36:23Z (GMT). No. of bitstreams: 1 ntu-97-R95527023-1.pdf: 8085676 bytes, checksum: 1b25b5bcba615d07c09a7608d802e13a (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 1. 前言 9
2. 文獻回顧 12 2.1. 電子構裝 12 2.2. 拉伸試驗目的 12 2.2.1. 拉伸試驗簡介 12 2.2.2. 選擇無鉛銲錫之原因 15 2.2.3. Sn-Ag合金機械性質研究 17 2.2.4. Sn-Ag-Cu合金機械性質研究 18 2.2.5. 添加稀土合金之機械性質研究 19 2.2.6. 添加Zn合金之機械性質研究 22 2.2.7. Sn-Ag-Cu-RE 拉伸特性 23 2.3. BGA主要破壞因素 24 2.4. 潛變試驗 27 2.4.1. 潛變簡介 27 2.4.2. 潛變機構 28 2.4.3. 潛變試驗研究 31 3. 實驗方法 46 3.1. 實驗材料 46 3.2. 實驗流程 46 3.3. 實驗設備 48 4. 結果與討論 53 4.1. 熱差分析(DSC) 53 4.2. 合金破斷面觀察研究 54 4.3. 合金顯微結構觀察研究 55 4.4. 合金橫截面(Cross section)觀察 55 4.5. 拉伸曲線分析 58 4.5.1. 溫度對機械性質的影響 58 4.5.2. 應變速率對機械性質的影響 60 5. 結論 91 6. 參考文獻 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 錫-銀-銅 | zh_TW |
| dc.subject | 拉伸 | zh_TW |
| dc.subject | 無鉛銲錫 | zh_TW |
| dc.subject | 高溫 | zh_TW |
| dc.subject | 稀土 | zh_TW |
| dc.subject | lead-free solder | en |
| dc.subject | Sn-Ag-Cu | en |
| dc.subject | rare earth | en |
| dc.subject | tensile | en |
| dc.subject | high temperature | en |
| dc.title | Sn-Ag-Cu無鉛銲錫添加稀土元素
高溫慢速拉伸性質之研究 | zh_TW |
| dc.title | Tensile properties of Sn-Ag-Cu lead-free solders
with rare earth in high temperature | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施漢章,林東毅,黃振東,張道智 | |
| dc.subject.keyword | 無鉛銲錫,拉伸,稀土,錫-銀-銅,高溫, | zh_TW |
| dc.subject.keyword | lead-free solder,tensile,rare earth,Sn-Ag-Cu,high temperature, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
