請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹魁元(Kuei-Yuan Chan) | |
| dc.contributor.author | Kuan-Lin Li | en |
| dc.contributor.author | 李冠霖 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:36:17Z | - |
| dc.date.available | 2016-08-31 | |
| dc.date.available | 2021-05-13T08:36:17Z | - |
| dc.date.copyright | 2016-08-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-15 | |
| dc.identifier.citation | [1] J. Wallén, “The history of the industrial robot,” Tech. Rep. 2853, Linköping University,Automatic Control, 2008.
[2] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Dimarogonas, and D. Kragic, “Dual arm manipulation - A survey,” Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1340–1353, 2012. [3] Y. C. Hsueh, “Impacts of tolerance and stiffness on the accuracy of manipulators with payload,” Master’s thesis, National Cheng Kung University, 2012. [4] M. C. Lai, “Multiobjective optimal path planning for robot manipulators with joint clearance,” Master’s thesis, National Cheng Kung University, 2014. [5] G. Duelen and K. Schröer, “Robot calibration—method and results,” Robotics and Computer-Integrated Manufacturing, vol. 8, no. 4, pp. 223 – 231, 1991. [6] S. Mukras, N. H. Kim, N. A. Mauntler, T. L. Schmitz, and W. G. Sawyer, “Analysis of planar multibody systems with revolute joint wear,” Wear, vol. 268, no. 5–6, pp. 643 – 652, 2010. [7] M. Hagele, “Robots conquer the world [turning point],” IEEE Robotics Automation Magazine, vol. 23, pp. 120–118, March 2016. [8] ISO 9283, Manipulating industrial robots – Performance criteria and related test methods. International Standards Organization, 1998. [9] A. Mousavi, A. Akbarzadeh, M. Shariatee, and S. Alimardani, “Repeatability analysis of a scara robot with planetary gearbox,” in Robotics and Mechatronics (ICROM), 2015 3rd RSI International Conference on, pp. 640–644, Oct 2015. [10] M. Slamani, A. Nubiola, and I. Bonev, “Assessment of the positioning performance of an industrial robot,” Industrial Robot: An International Journal, vol. 39, no. 1, pp. 57–68, 2012. [11] K. L. Ting, J. Zhu, and D. Watkins, “The effects of joint clearance on position and orientation deviation of linkages and manipulators,” Mechanism and Machine Theory, vol. 35, no. 3, pp. 391–401, 2000. [12] C. R. Tischler and A. E. Samuel, “Prediction of the slop in general spatial linkages,” The International Journal of Robotics Research, vol. 18, no. 8, pp. 845–858, 1999. [13] O. Altuzarra, J. Aginaga, A. Hernandez, and I. Zabalza, “Workspace analysis of positioning discontinuities due to clearances in parallel manipulators,” Mechanism and Machine Theory, vol. 46, no. 5, pp. 577–592, 2011. [14] J. Aginaga, O. Altuzarra, E. Macho, and X. Iriarte, “Assessing Position Error Due to Clearances and Deformations of Links in Parallel Manipulators,” Journal of Mechanical Design, vol. 135, no. 4, p. 41006, 2013. [15] Y. Zhao and Z. F. Bai, “Dynamics analysis of space robot manipulator with joint clearance,” Acta Astronautica, vol. 68, no. 7–8, pp. 1147 – 1155, 2011. [16] X. Zhang, X. Zhang, and Z. Chen, “Dynamic analysis of a 3-RRR parallel mechanism with multiple clearance joints,” Mechanism and Machine Theory, vol. 78, pp. 105–115, 2014. [17] L. X. Xu and Y. G. Li, “Investigation of joint clearance effects on the dynamic performance of a planar 2-DOF pick-and-place parallel manipulator,” Robotics and Computer-Integrated Manufacturing, vol. 30, no. 1, pp. 62–73, 2014. [18] J. Caenen and J. Angue, “Identification of geometric and nongeometric parameters of robots,” in Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on, pp. 1032–1037 vol.2, May 1990. [19] J. H. Jang, S. H. Kim, and Y. K. Kwak, “Calibration of geometric and non-geometric errors of an industrial robot,” Robotica, vol. 19, pp. 311–321, 5 2001. [20] K. L. Conrad, P. S. Shiakolas, and T. Yih, “Robotic calibration issues: Accuracy, repeatability and calibration,” in Proceedings of the 8th Mediterranean Conference on Control and Automation (MED2000), Rio, Patras, Greece, 2000. [21] Z. S. Roth, B. Mooring, and B. Ravani, “An overview of robot calibration,” Robotics and Automation, IEEE Journal of, vol. 3, pp. 377–385, October 1987. [22] J. DENAVIT, “A kinematic notation for lower-pair mechanisms based on matrices.,” Trans. of the ASME. Journal of Applied Mechanics, vol. 22, pp. 215–221, 1955. [23] B. Karan and M. Vukobratovic, “Calibration and accuracy of manipulation robot model—an overview,” Mechanism and Machine Theory, vol. 29, no. 3, pp. 479 – 500, 1994. [24] A. Y. Elatta, P. G. Li, L. Z. Fan, D. Yu, and F. Luo, “An overview of robot calibration,” Information Technology, vol. 3, pp. 74–78, 2004. [25] C. K. Chou, W. T. Yang, and P. C. Lin, “Dual-arm object manipulation by a hybrid controller with kalman-filter-based inputs fusion,” in Automatic Control Conference (CACS), 2014 CACS International, pp. 308–313, Nov 2014. [26] H. Lankarani and P. Nikravesh, “A contact force model with hysteresis damping for impact analysis of multibody systems,” Journal of Mechanical Design, vol. 112, pp. 369–375, 1990. [27] G. T. Rooney and P. Deravi, “Coulomb friction in mechanism sliding joints,” Mechanism and Machine Theory, vol. 17, no. 3, pp. 207 – 211, 1982. [28] J. Baumgarte, “Stabilization of constraints and integrals of motion in dynamical systems,” Computer Methods in Applied Mechanics and Engineering, vol. 1, no. 1, pp. 1 – 16, 1972. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3733 | - |
| dc.description.abstract | 本論文以設計、分析的方法探討機器手臂的準度提昇方案,提出一套由機
械手臂運行軌跡推估關節間隙的方法。透過建立機械手臂結合關節間隙之動態模型,並探討關節間隙所導致的軌跡誤差,建立關節間隙與軌跡誤差間的關係式。當給定機械手臂軌跡誤差後藉由此關係式可推估出關節間隙之大小,再經由最佳化流程規劃出誤差較小之路徑,提升機械手臂之準度。本研究之方法可評估重複精度相同但間隙不同的機械手臂位於工作空間中的性能,並將一存在三個關節間隙(其值為0.328 mm、0.171 mm、0.483 mm)之機械手臂位於目標點的平均誤差由0.637 mm 降低至0.031 mm,準度改善了95.1%,結果顯示本研究方法能比較機械手臂間的性能,並有效提高機械手臂之準度。 | zh_TW |
| dc.description.abstract | This study presents a method to improve manipulator accuracy by predicting uncertainty from the trajectory of manipulators. We construct the dynamic of manipulators with clearances equations and use them to obtain the operation error of a given trajectory. We are able to predict the joint clearance and arrange a trajectory with smaller error through optimization technics using the proposed method. This study reduces the average error at target points from 0.637 mm to 0.031 mm for robot manipulator with joint clearance 0.328 mm, 0.171 mm, and 0.483 mm, that is a 95.1% improvement in accuracy over the same manipulator before optimization. Our method can not only compare the true manufacturing quality of two robot manipulators, but also provide a more accurate operation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:36:17Z (GMT). No. of bitstreams: 1 ntu-105-R03522612-1.pdf: 16921376 bytes, checksum: a6dd55f8849abd43d267c6a3a625eeef (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xiii 表目錄 xvi 符號列表 xix 第一章緒論 1 1.1 前言 1 1.2 現行精準度規範簡介 2 1.3 研究動機與研究目的 3 1.4 本文架構 4 第二章研究背景與文獻回顧 7 2.1 關節間隙之相關文獻 7 2.1.1 關節間隙之影響與分析 7 2.1.2 存在關節間隙之機械手臂動態模型 8 2.2 機械手臂精準度提昇方法 8 2.2.1 機械手臂之不確定因素 9 2.2.2 提升精準度之方法 9 2.3 先前研究─ ─串連式機械手臂最佳參數校正與精度提昇 14 2.3.1 研究方法 14 2.3.2 最佳化方法 17 2.3.3 研究結果 18 2.4 小結 19 第三章機械手臂動態模型 21 3.1 理想DELTA 平行五連桿動態模型 21 3.1.1 動態模型 22 3.1.2 力分析 25 3.2 結合關節間隙之DELTA 平行五連桿動態模型 27 3.2.1 關節間隙模型 28 3.2.2 接觸力與摩擦力模型 30 3.2.3 動態模型 32 第四章研究方法 39 4.1 機械手臂之設計參數. 40 4.2 目標路徑規劃 41 4.3 由逆向運動學取得理想模型之輸入扭矩 45 4.4 計算軌跡誤差與軌跡誤差曲線 45 4.5 建立關節間隙與軌跡誤差曲線之關係式 47 4.5.1 取得關節間隙與軌跡誤差曲線間的特徵 47 4.5.2 特徵實驗驗證 50 4.5.3 建立特徵與關節間隙間之關係式 54 4.6 設計最佳目標路徑 54 第五章工程案例 59 5.1 機械手臂之參數與性能量測 60 5.2 推估關節間隙大小並比較工作空間中之表現 62 5.2.1 推估關節間隙大小 63 5.2.2 工作空間中之表現 66 5.3 最佳化目標路徑 70 5.3.1 最佳化方方程式與最佳化結果 70 5.4 小結 75 第六章結論與未來展望 77 6.1 結論 77 6.2 研究建議與未來研究方向 78 參考文獻 80 作者簡歷 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 關節間隙 | zh_TW |
| dc.subject | 路徑規劃 | zh_TW |
| dc.subject | 動態模型 | zh_TW |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 機械手臂 | zh_TW |
| dc.subject | Dynamic model | en |
| dc.subject | Robot manipulator | en |
| dc.subject | Joint clearance | en |
| dc.subject | Optimization | en |
| dc.subject | Trajectory planning | en |
| dc.title | 機械手臂之關節間隙評估與運行精度提升之方法 | zh_TW |
| dc.title | Analysis and Accuracy Improvement of Robot Manipulators with Joint Clearance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李志中(Jyh-Jone Lee),林沛群(Pei-Chun Lin) | |
| dc.subject.keyword | 機械手臂,關節間隙,最佳化,路徑規劃,動態模型, | zh_TW |
| dc.subject.keyword | Robot manipulator,Joint clearance,Optimization,Trajectory planning,Dynamic model, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201602574 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 16.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
