請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37207
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂廷璋 | |
dc.contributor.author | Ya-Fang Zheng | en |
dc.contributor.author | 鄭雅方 | zh_TW |
dc.date.accessioned | 2021-06-13T15:21:25Z | - |
dc.date.available | 2016-08-16 | |
dc.date.copyright | 2011-08-16 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-11 | |
dc.identifier.citation | 李宜真. 於醋酸溶液中以微波輔助修飾之玉米澱粉理化特性。碩士論文。臺灣大學。2010。
張永欣。微波食品加工原理與應用。財團法人中華民國冷凍食品發展協會出版。1992。 AACC. Method 76-21. In Approved method of the AACC, edition 10.; St. Paul Minnesota: American Association of Cereal Chemists’, Inc. 2000. Blanshard, J. M. V. Starch granule structure and function: a physicochemical approach. In: Starch: Properties and Potential; Galliard, T., Eds.; John Wiley & Sons Press: Chichester, U.K. 1987, 17–54pp. Bogracheva, T. Y.; Morris, V. J.; Ring, S. G.; Hedley, C. L. The granular structure of C-type pea starch and its role in gelatinization. Biopolymers 1998, 45, 323–332. Cheetham, N. W. H.; Tao, L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr. Polym. 1998, 36, (4), 277-284. Chiu, C. W.; Solarek, D. Modification of Starches. In Starch , edition 3.; James, B.; Roy, W., Eds.; Academic Press: San Diego, 2009, 629-655 pp. Clarke, H. T.; Gillespie, H. B. The action of acetic acid upon certain carbohydrates1. J. Am. Chem. Soc. 1932, 54, (5), 2083-2088. Colonna, P.; Buleon, A.; Mercier, C. Physically modified starches. In Starch properties and potential; Galliard, T., Eds.; John Wiley & Sons Press: Chichester, U.K. 1987; 79–114 pp. Cooke, D.; Gidley, M. J. Loss of crystalline and molecular order during starch gelatinization: Origin of the enthalpic transition. Carbohydr. Res. 1992, 227, 103-112. Copeland, L.; Blazek, J.; Salman, H.; Tang, M. C. Form and functionality of starch. Food Hydrocoll. 2009, 23, (6), 1527-1534. Debet, M. R.; Gidley, M. J. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule ‘‘ghost’’ integrity. J. Agric. Food Chem., 2007, 55, 4752–4760. Donald, A. M. Plasticisation and self-assembly in starch granules. Cereal Chem., 2001, 78, 307–314. Donald, A. M. Understanding starch structure and functionality. In Starch in food: Structure, function and applications. Eliasson, A. C., Eds.; Woodhead Publishing Limited/CRC Press LLC: Cambridge, England /Boca Raton, USA. 2004; 156–184 pp. Dubois, M.; Gilles, K. K.; Hamilton, J. K.; Rebers P. A.; Smith F. Colorimetric methods for determination of sugars and related substances. Anl. Chem. 1956, 28, 350-356. Eastman, J. E.; Moore, C. O. Cold water soluble granular starch for gelled food compositions. 1984, US Patent, 4,465,702. Eliasson, A.; Gudmundsson, M. Starch: Physicochemical and Functional Aspects. In Carbohydrates in Food, edition 2.; Eliasson, A. C., Eds.; CRC Press: Boca Raton, Florida, 2006; 391-469 pp. Ellis, H. S.; Ring, S. G.; Whittam, M. A. A comparison of the viscous behaviour of wheat and maize starch pastes. J. Cereal Sci. 1989, 10, (1), 33-44. Fannon, J. E.; Hauber, R. J.; Bemiller, J. N. Surface pores of starch granules. Cereal Chem. 1992, 69, 3, 284-288. Fannon, J. E.; Shull, J. M.; Bemiller, J. N., Interior channels of starch granules. Cereal Chem. 1993, 70, 5, 611-613. French, D. Fine structure of starch and its relationship to the organisation of starch granules. 1972, Denpun Kaguku, 19, 8–25. Friedrich, J. E. Titratable activity of acid tastants. In Current protocols in food analytical chemistry, Wrolstad, E. R. E., Eds.; Wiley: New York, U.S.A. 2001; G 2.1.1–G2.1.6. pp. Gallant, D. J.; Bouchet, B.; Baldwin, P. M., Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, (3-4), 177-191. Galliard, T.; Bowler, P. Morphology and composition of starch. In, Starch properties and potential, Galliard, T., Eds.; John Wiley & Sons Press: Chichester, U.K. 1987; 57–78 pp. Gidley, M. J. Factors affecting the crystalline type (A-C) of native starches and model compounds: a rationalisation of observed effects in terms of polymorphic structures. Carbohydr Polym. 1987, 161, 301–304,. Gidley, M. J., Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules 1989, 22, (1), 351-358. Greenwood, C.T.; Thompson, J. Physicochemical studies on starches. XXIV. The fraction and characterization of starches of various plant origins, J. Chem. Soc. 1962, 222–229. Gunaratne, A.; Corke, H. Influence of prior acid treatment on acetylation of wheat, potato and maize starches. Food Chem. 2007, 105, (3), 917-925. Han, J. A.; Lim, S. T. Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohy. Polym. 2004, 55, (3), 265-272. Hizukuri, S. Polymodal distribution of the chain length of amylopectins, and its significance. Carbohy. Res. 1986, 147, 342–347. Hizukuri, S.; Takeda, Y.; Yasuda, M.; Suzuki, A. Multi-branched nature of amylose and the action of debranching enzymes. Carbohy. Res. 1981, 94, (2), 205-213. Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym. 2001, 45, (3), 253-267. Imberty, A.; Buléon, A.; Tran, V.; Pérez, S. Recent advances in knowledge of starch structure. Starch-Starke 1991, 43, 375–384, Jane, J. L. Preparation and food applications of physically modified starches. Trends Food Sci. Tech. 1992, 3, 145-148. Jane, J. L. Starch. In Chemical and Functional Properties of Food Saccharides; Tomasik, P., Eds.; CRC Press: Washington, D.C., U.S.A. 2004. Jane, J. L. Current understanding on starch granule structures. J. Applied Glycoscience. 2006, 53, 205–213. Jane, J. L.; Kasemsuwan, T.; Leas, S.; Zobel, H.; Robyt, J. F. Anthology of starch granule morphology by scanning electron-microscopy. Starch-Starke 1994, 46, (4), 121-129. Jane, J.; Craig, S. A. S.; Seib, P. A.; Hoseney, R. C. Characterization of antigranulocytes cold water-soluble starch. Starch-Starke 1986, 38, (8), 258-263. Jane, J., Shen L., Wang, L., and Maningat, C.C. Preparation and properties of small-particle corn starch. Cereal Chem. 1992, 69, 280–283. Jane, J.; Seib, P. A. Preparation of granular cold-water swelling/soluble starches by alcoholic-alkaline treatments. 1991, US Patent, 5057,157. Jatowenko, W. Acetylated starch and miscellaneous organic esters. In Modified starches: Properties and uses. Wurzburg, O. B., Eds., CRC Press: Boca Raton, Florida, 1986, 64–73 pp. Jenkins, P. J.; Cameron, R. E.; Donald, A. M., A universal feature in the structure of starch granules from different botanical sources. Starch - Stärke 1993, 45, (12), 417-420. Jenkins, P. J.; Donald, A. M., Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohy. Res. 1998, 308, (1-2), 133-147. Khan, A. R.; Johnson, J. A.; Robinson, R. J. Degradation of starch polymers by microwave-energy. Cereal Chem. 1979, 56, (4), 303-304. Lewandowicz, G.; Fornal, J.; Walkowski, A. Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydr. Polym. 1997, 34, (4), 213-220. Lewandowicz, G.; Jankowski, T.; Fornal, J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydr. Polym. 2000, 42, (2), 193-199. Lin, J. H.; Lii, C. Y.; Chang, Y. H. Change of granular and molecular structures of waxy maize and potato starches after treated in alcohols with or without hydrochloric acid. Carbohydr. Polym. 2005, 59, (4), 507-515. Lindeboom, N.; Chang, P. R.; Tyler, R. T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch-Starke 2004, 56, (3-4), 89-99. Liu, Q. Understanding starches and their role in foods. In Food Carbohydrates, Cui, S.W. Eds., CRC Press: Boca Raton, USA, 2005; 310-349 pp. Luo, Z. G.; He, X. W.; Fu, X.; Luo, F. X.; Gao, Q. Y. Effect of microwave radiation on the physicochemical properties of normal maize waxy, maize and amylomaize V starches. Starch-Starke 2006, 58, (9), 468-474. Matveev, Y. I.; Van Soest, J. J. G.; Nieman, C.; Wasserman, L. A.; Protserov, V.; Ezernitskaja, M.; Yuryev, V. P. The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr. Polym. 2001, 44, (2), 151-160. Murphy, P. Starch. In Handbook of Hydrocolloids, edition 2., Phillips, G. O.; Williams, P. A. Eds., CRC Press: Boca Raton, Florida, 2000; 41-66 pp. Nara, S.; Komiya, T. Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch-Starke 1983, 35, 407–410. Ohishi, K.; Kasai, M.; Shimada, A.; Hatae, K. Effects of acetic acid on the rice gelatinization and pasting properties of rice starch during cooking. Food Res. Inter. 2007, 40, (2), 224-231. Palav, T.; Seetharaman, K. Impact of microwave heating on the physico-chemical properties of a starch-water model system. Carbohydr. olym. 2007, 67, (4), 596-604. Pan, D. D.; Jane, J. Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacromolecules 2000, (1), 126–132. Peterson, S. C.; Eller, F. J.; Fanta, G. F.; Felker, F. C.; Shogren, R. L. Comparison of the effects of critical fluid and reflux-extracted techniques on cornstarch pasting properties. Carbohydr. Polym. 2008, 71, (1), 74-79. Powell, E. L. Production and use of pregelatinized starch. In Starch: Chemistry and Technology; Whistler, R. L.; Paschall, E. F. Eds., Academic Press: New York, 1967; Vol. II, 524-536 pp. Qi, X.; Tester, R. F.; Snape, C. E.; Ansell, R. Molecular basis of the gelatinisation and swelling characteristics of waxy rice starches grown in the same location during the same season. J. Cereal Sci. 2003, 37, 363–376. Rajagopalan, S.; Seib, P. A. Granular cold-water-soluble starches prepared at atmospheric pressure. J. Cereal Sci. 1992, 16, (1), 13-28. Rutenberg, M. W.; Solarek, D. Starch derivatives: Production and uses. In Starch: Chemistry and technology, edition 2.; Whistler, R. L.; Bemiller, J. N.; Paschall, E. F., Eds.; Academic Press: Orlando, U.S.A. 1984; 312–388pp. Sandhya Rani, M. R.; Bhattacharya, K. R. Rheology of rice-flour pastes: Effect of variety, concentration, and temperature and time of cooking. J. Texture Stud. 1989, 20, 127–137. Seow, C. C.; Thevamalar, K. Internal plasticization of granular rice starch by hydroxypropylation: Effects on phase transitions associated with gelatinization. Starch-Starke 1993, 45, 85–88. Shogren, R. L. Modification of maize starch by thermal processing in glacial acetic acid. Carbohydr. Polym. 2000, 43, (4), 309-315. Shogren, R. L. Rapid preparation of starch esters by high temperature/pressure reaction. Carbohydr. Polym. 2003, 52, (3), 319-326. Shogren, R. L.; Biswas, A. Preparation of water-soluble and water-swellable starch acetates using microwave heating. Carbohydr. Polym. 2006, 64, (1), 16-21. Singh, N.; Singh, J.; Kaur, L.; Singh Sodhi, N.; Singh Gill, B. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, (2), 219-231. Tang, H. J.; Mitsunaga, T. H.; Kawamura, Y. Molecular arrangement in blocklets and starch granule architecture. Carbohydr. Polym. 2006, 63, (4), 555-560. Tang, M. C.; Copeland, L. Investigation of starch retrogradation using atomic force microscopy. Carbohydr. Polym. 2007 70, 1–7. Tester, R. F.; Karkalas, J.; Qi, X. Starch - composition, fine structure and architecture. J. Cereal Sci. 2004, 39, (2), 151-165. Tester, R. F.; Morrison, W. R. Swelling and gelatinization of cereal starches. 1. Effects of amylopectin, amylose, and lipids. Cereal Chem. 1990, 67, (6), 551-557. Thompson, D. B. On the non-random nature of amylopectin branching. Carbohydr. Polym. 2000, 43, (3), 223-239. U.S. EPA, Microwave Assisted Acid Digestion of Siliceous and Organically Basedmatrices. In Test methods for evaluating solid waste, SW-846, Method 3052, 1996. Wang, Y. J.; Truong, V. D.; Wang, L. F. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polym. 2003, 52, (3), 327-333. Wu, H. C. H.; Sarko, A. The double-helical molecular structure of crystalline B-amylose. Carbohy. Res. 1978, 61, 7–26. Wu, H. C. H.; Sarko, A. The double-helical molecular structure of crystalline A-amylose. Carbohy. Res. 1978. 61, 27–40. Wurzburg O. B. Starch, modified starch and dextrin. In Products of the Corn Refining Industry: Seminar Proceedings, Corn Refiners Association, Inc Press: Washington, DC. 1978, 23-32 pp. Wurzburg, O. B. Converted starches. In Modified Starches: Properties and Uses, Wurzburg, O. B., Eds., CRC Press: Boca Raton, Florida, 1986, 18-38 pp. Xie, S. X.; Liu, Q.; Cui, S. W. Starch modification and applications. In Food Carbohydrates, Cui, S.W. Eds., CRC Press: Boca Raton, USA, 2005; 357-405 pp. Xu, Y. X.; Miladinov, V.; Hanna, M. A. Synthesis and characterization of starch acetates with high substitution. Cereal Chem. 2004, 81, (6), 735-740. Yan, H.; Zhengbiao, G. U. Morphology of modified starches prepared by different methods. Food Res. Inter. 2010, 43, (3), 767-772. Yeh, J. Y.; Garwood, D. L.; Shannon, J. C. Characterization of starch from maize endosperm mutants. Starch - Stärke 1981, 33, (7), 222-230. Yuryev, V. P.; Krivandin, A. V.; Kiseleva, V. I.; Wasserman, L. A.; Genkina, N. K.; Fornal, J.; Blaszczak, W.; Schiraldi, A. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohy. Res. 2004, 339, (16), 2683-2691. Zobel, H. F. Starch crystal transformations and their industrial importance. Starch-Starke 1988, 40, 1–7. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37207 | - |
dc.description.abstract | 預糊化澱粉或顆粒冷水可膨潤澱粉是廣泛應用於即時食用產品。本研究之目的是利用短時間微波加熱濕潤粉體為製程,期望得到生產冷水可膨潤澱粉。利用三種不同直鏈澱粉含量之玉米澱粉 (糯性、一般玉米及 Hylon V)原料,浸潤不同濃度之醋酸溶液,並以微波快速加熱。結果中顯示微波加熱可使濕潤的澱粉快速地糊化,不同直鏈澱粉含量的玉米澱粉對於微波加熱的敏感度: 糯性玉米澱粉>一般玉米澱粉>Hylon V 玉米澱粉。由於醋酸浸潤溶液的濃度會顯著影響糊化,為了得到最適的顆粒完整性及膨潤程度,以反應曲面試驗設計法探討醋酸濃度及微波加熱秒數的影響。最適化條件探討結果顯示糯性玉米澱粉以 5.9M 醋酸溶液浸潤,微波處理 22 秒,在 35°C 中澱粉膨潤力為 4. 95±0.38 (RSM 之估計值為 3.83);一般玉米澱粉以 4.9M 醋酸溶液浸潤,微波處理 37 秒,樣品膨潤力(35°C)為6.19±0.2 (RSM之估計值為 5.98);Hylon V 玉米澱粉以 4.7M 醋酸溶液浸潤,微波處理 37 秒,澱粉(35°C)膨潤力為 4.66±0.08 (RSM 之估計值為 4.65)。在顆粒外觀觀察,可明顯觀察到偏光十字現象減弱,在一般玉米澱粉甚至幾乎消失(偏光消失率為 92%);在 X光繞射圖譜結果,結晶度較天然澱粉降低了 72%。在澱粉成糊特徵方面,發現經過醋酸溶液浸潤及微波處理會造成尖峰黏度下降。在澱粉分子的分子量分佈結果中沒有顯著改變,顯示醋酸-微波處理可能為一種物理性修飾。 | zh_TW |
dc.description.abstract | Pre-gelatinized or granular cold-water swelling starch (GCWSS) is widely applied in instant food products. The goal of this thesis was to establish a process to prepare cold-water swelling starch from damped native starch granules by microwave heating. Three corn starches with different amylose contents (waxy, normal and Hylon V) were impregnated with different concentration of acetic acid solution (AcOH) and heated in a domestic microwave oven. As the results showed, the damped starches were rapidly gelatinized by microwave heating. The susceptibility of starches to microwave heating was in the order of waxy > normal > Hylon V. The concentration of AcOH had a significant effect on the gelatinization. In order to obtain the optimal granular integrity and degree of swollen, the response surface methodology was designed to study the influences of the AcOH concentration and microwave time. The waxy corn starch impregnated with 5.9 M AcOH and heated for 22 seconds had the highest swelling power value (at 35°C ) of 4.95 ± 0.38 g/g (predicted from RSM was 3.83 ). The normal corn starch had a maximum swelling power value (at 35°C ) of 6.19 ± 0.2 g/g (predicted from RSM was 5.93 ) by treated 4.9 M AcOH and heated for 37 seconds. A maximum swelling power value (at 35°C ) of Hylon V corn starch was 4.66 ± 0.08 g/g (predicted from RSM was 4.65 ) by treated 4.7 M AcOH and heated for 37 seconds. The birefringence almost disappeared in GCWSS prepared from the normal corn starch shown by microscopic observations and the loss ratio of polarized light reached 92%. Crystalline index of GCWSS prepared from normal corn starch was reduced by 72% than the native starch in the results of X-ray diffraction pattern. The starch pasting profile showed a significant decrease of peak viscosity after treated by AcOH and microwave heating. The molecular weight distribution of starch molecules were not dramatically altered indicated that this acetic acid-microwave treatment is a physical modification. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T15:21:25Z (GMT). No. of bitstreams: 1 ntu-100-R98641001-1.pdf: 8028121 bytes, checksum: f83966b6c68f304c8fb13f6cd6c27a84 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要 ........................................................................................................................... I
Abstract ............................................................................................................................. II 目錄 ................................................................................................................................ IV 圖目錄 ............................................................................................................................ VI 表目錄 .......................................................................................................................... VIII 第一章 前言 .................................................................................................................. 1 第二章 文獻整理 .......................................................................................................... 2 一、 天然澱粉 .......................................................................................................... 2 (一) 顆粒外觀 ...................................................................................................... 2 (二) 澱粉顆粒的分子組成 .................................................................................. 5 1. 直鏈澱粉 ...................................................................................................... 5 2. 支鏈澱粉 ...................................................................................................... 6 (三) 澱粉結晶結構 .............................................................................................. 7 (四) 澱粉顆粒的結構 .......................................................................................... 8 (五) 澱粉分子排列 ............................................................................................ 10 1. 澱粉膨潤 ( Swelling of starch ) ................................................................ 10 2. 澱粉糊化及成糊 ......................................................................................... 11 3. 澱粉回凝 .................................................................................................... 13 二、 澱粉的修飾 .................................................................................................... 14 (一) 物理性修飾 ( Physical modification) ....................................................... 14 1. 預糊化澱粉 ( Pregelatinized starch ) ........................................................ 14 2. 顆粒冷水可膨潤(Cold-water-swelling )與冷水可溶澱粉 (Pregelatinized granular starch) ................................................................................................... 15 (1) 噴霧乾燥 ( Spray drying ) ......................................................................... 15 (2) 醇水溶液中進行熱處理 ............................................................................ 15 (3) 醇鹼處理 .................................................................................................... 16 (二) 醋酸對澱粉的物理性質影響 .................................................................... 16 (三) 化學性修飾 ( Chemical modification ) ..................................................... 17 (四) 醋酸於澱粉之化學修飾的使用 ................................................................ 17 三、 微波加熱 ........................................................................................................ 18 (一) 微波加熱原理 ............................................................................................ 18 (二) 微波加熱特性 ............................................................................................ 18 (三) 微波加熱對澱粉-水分系統的影響 ........................................................... 18 (四) 微波加熱與醋酸對澱粉的影響 ................................................................ 19 第三章 實驗架構 ........................................................................................................ 23 第四章 材料與方法 .................................................................................................... 24 一、 實驗材料與試藥 ............................................................................................ 24 二、 樣品製備 ........................................................................................................ 25 三、 實驗設計-顆粒冷水可膨潤澱粉最適化製程條件 .................................... 26 四、 實驗分析方法 ................................................................................................ 29 (一) 澱粉失重率 ................................................................................................ 29 (二) 澱粉顆粒對醋酸溶液的吸附量 ................................................................ 29 (三) 膨潤力及水溶性指標 ................................................................................ 30 (四) 澱粉顆粒外觀 ............................................................................................ 30 (五) 澱粉結晶性質分析 .................................................................................... 30 (六) 熱性質分析 ................................................................................................ 31 (七) 澱粉成糊性質 ............................................................................................ 31 (八) 分子量分布 ................................................................................................ 31 (九) 取代度測定 ................................................................................................ 32 第五章 結果與討論 .................................................................................................... 33 一、 探討不同直鏈澱粉含量之玉米澱粉對醋酸溶液的差異吸附 .................... 33 二、 微波-醋酸處理生產顆粒冷水可膨潤澱粉之最適化製程探討 ................... 37 (一) 反應曲面法之澱粉失重率及回收率試驗結果 ............................................ 37 (二) 反應曲面法之澱粉顆粒膨潤力試驗結果 .................................................... 44 (三) 反應曲面法預測結果之驗證 ........................................................................ 50 三、 顆粒冷水可膨潤澱粉之回收率及失重率 .................................................... 51 四、 顆粒膨潤力及水溶性指標 ............................................................................ 53 五、 澱粉顆粒外觀 ................................................................................................ 57 (一) 光學性質及偏光十字消失率 .................................................................... 57 (二) 掃描式電子顯微鏡 .................................................................................... 62 六、 結晶性質分析 ................................................................................................ 66 七、 糊化熱性質分析 ............................................................................................ 69 八、 澱粉成糊性質 ................................................................................................ 73 九、 分子量分布 .................................................................................................... 76 十、 乙醯取代度 .................................................................................................... 79 第六章 結論 ................................................................................................................ 80 第七章 參考文獻 ........................................................................................................ 81 第八章 附錄 ................................................................................................................ 90 結論 .............................................................................................................................. 107 | |
dc.language.iso | zh-TW | |
dc.title | 以微波─醋酸處理生產顆粒狀冷水可膨潤玉米澱粉 | zh_TW |
dc.title | Preparation of granular cold-water-swelling corn
starches by acetic acid-microwave treatment. | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧訓,張永和,賴喜美,邵貽沅 | |
dc.subject.keyword | 玉米澱粉,醋酸,微波,冷水可膨潤澱粉, | zh_TW |
dc.subject.keyword | corn starch,microwave heating,acetic acid,cold- water- swelling starch, | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 7.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。