Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36949| Title: | 退化型之反應擴散方程 Reaction-diffusion Equations of Degenerate-type |
| Authors: | Li-Sheng Chang 張立昇 |
| Advisor: | 陳俊全(Chiun-Chuan Chen) |
| Keyword: | 行波解,反應擴散方程,退化型,sharp解,波速估計, Travelling wave solutions,Reaction-diffusion equations,degenerate,sharp solutions,Speed estimates, |
| Publication Year : | 2005 |
| Degree: | 碩士 |
| Abstract: | 這篇論文討論反應擴散方程在Fisher-KPP及bistable的情形下擴散係數退化所造成的影響。當非線性項是Fisher-KPP時,我們可得到一連串波速c≧c*的行波解,其中波速c=c*時會產生sharp的行波解;當非線性項是bistable時發現所有行波解均為sharp。最後我們利用Min-max方法去估計出sharp行波解之波速。 This paper investigates the effects of a degenerate diffusion term in reaction-diffusion models with Fisher-KPP and bistable type nonlinearities. In the first case when the nonlinear term g is of Fisher-KPP type, we obtain a continuum of t.w.s. having wave speed c greater than a threshold value c* and the appearance of a sharp-type profile if c = c*. In the other case when g is bistable, we observe that the t.w.s. is of sharp type. Finally, we estimate the speed of front propagation for reaction-diffusion equations. This formulation makes it possible to calculate sharp estimates for the speed explicitly. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36949 |
| Fulltext Rights: | 有償授權 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-94-1.pdf Restricted Access | 136.64 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
