請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36873
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳錫侃 | |
dc.contributor.author | Tsung-En Yang | en |
dc.contributor.author | 楊宗恩 | zh_TW |
dc.date.accessioned | 2021-06-13T08:20:21Z | - |
dc.date.available | 2014-07-26 | |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-20 | |
dc.identifier.citation | [1] O.Kozlova., et al., Wetting and Brazing of Stainless Steels by Copper-Siliver Eutectic, Materials Science and Engineering: A, 495(2007)96.
[2] W.F.Smith, Structure and Properties of Engineering Alloys, McGraw-Hill Inc., 1993. [3] 黃振賢,機械材料,新文京開發出版有限公司,1990。 [4] J. R. Davis et. Al., Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM International, 1990. [5] S. D Brandi et. Al., Brazeability and Solderability of Engineering Material, in Metals Handbook, Vol.6, American Society of Metals, 1983. [6] M. Schwartz, in W. H. Culberly et. Al., Brazing pf reactive and refractory metals, in Metals Handbook, Vol.6, American Society of Metals, 1983. [7] M. Donacie, Titanium-A Technical Guide, American Society of Metals, 1988. [8] T.Takemoto and I.Okamoto, J.Mater. Sci, 23(1988)1301. [9] B. Norris, in P.Lacombe et. Al., Proc 6th World Conf on Titanium, Les Edition de Physique, 1988. [10] M. Nishida and T. Honma, All-round Shape Memory Effect in Ni-rich TiNi Alloys Generated by Constrained Aging, Scripta Matallurgica, 18(1984) 1293. [11] M. Nishida and T. Honma, Electron Microscopy Studies of The All-around Shape Memory Effect in A Ti-51.0 at .%Ni Alloy, Scripta Matallurgica, 18(1984) 1389. [12] S. Miyazaki, S. Kimura, F. Takei, T. Miura, K. Otsuka and Y. Suzuki, Shape Memory Effect and Pseudoelasticity in a Ti---Ni Single Crystal, Scripta Matallurgica, 17(1983)1057. [13] S. Miyazaki, K. Otsuka, T. Imao and Y.Suzuki, Lüders-like Deformation Observed in The Transformation Pseudoelasticity of A Ti---Ni Alloy, Scripta Matallurgica, 15(1981)853. [14] S. Miyazaki, K. Otsuka and Y.Suzuki, Transformation Pseudoelasticity and Deformation Behavior in A Ti-50.6at%Ni Alloy, Scripta Matallurgica, 15(1981)287. [15] S. Miyazaki, T. Imao, Y. Igo and K. Otsuka, Effect of Thermal Cycling on The Transformation Temperatures of Ti---Ni Alloys, Acta Matallurgica, 34(1986) 2045. [16] C. M. Wayman, Int.Conf.on “Engineering with Shape Memory Alloys”, (1988)15. [17] C. M. Wayman, MRS Bulletin, No.4(1993). [18] H. C. Lin , S. K. Wu and T. S. Chou, Journal of Alloys and Compounds, Aging Effect on The Low Temperature Internal Friction Relaxation Peak in a Ti49Ni51 Alloy, 355(2003)72. [19] O. Mercier and K. N. Melton, Low-frequency Internal Friction Peaks Associated with The Martensitic Phase Transformation of NiTi, Acta Matallurgica, 27(1979)1467. [20] M. Nishikawa, H. Tanaka, M. Kohda, T. Nagaura and K. Watanabe, J.de Physoque, (1982)C4-839. [21] J. Beyer, P. A. Besselink and J. H. Cindehovious, Int,l.Conf.PROC.SMA,86, (1986)492. [22] A.Hirose, M.Ufhihara, T.Araki, K.Honda and M.Kondoh. J. Jap. Inst. Metals, 54(1990)262. [23] Xingke. Zhao, Wei. Wang, Li. Chen, Fangjun. Liu, Geng Chen, Jihua Huang and Hua Zhang, Two-stage Superelasticity of a Ce-added Laser-welded TiNi Alloy,Materials Letters, 62(2008)3539. [24] T. Y. Yang, R. K .Shiue and S. K. Wu, Infrared Brazing of Ti50Ni50 Shape Memory Alloy Using Pure Cu and Ti–15Cu–15Ni Foils, Intermetallics, 12(2004)1285. [25] 薛人豪,鈦鎳形狀記憶合金紅外線硬銲接合之研究,國立台灣大學材料科學與工程學研究所博士論文,2006。 [26] M. Schwartz, Brazing. 2nd ed. , American Society of Metals, 2003. [27] T. B. Massalasi, Binary Alloy Phase Diagrams, American Society of Metals, 1990. [28] W. H. Kearns, Welding Handbook, Vol.4, American Society of Metals , 1972. [29] 張志偉,紅外線快速硬銲接合Ag-Cu-Ti填料/Al2O3基板之動態潤濕行為研究,國立台灣大學機械工程研究所碩士論文,2003。 [30] J. H. Li, and R. Y. Lin, Joint Zone Evolution in Infrared Bonded Steels with Copper Filler, Matallurgical and Materials Transactions, 32B(2001)1177. [31] S. W. Banovic, J. N. DuPont and A. R. Marder, Dilution Control in Gas-tungsten-arc Welds Involving Superaustenitic Stainless Steels and Nickel-based alloys, Matallurgical and Materials Transactions, 31A(2000)1805. [32] S. W. Banovic, J. N. DuPont and A. R. Marder, Acta Materialia, 48(2000)2815. [33] Y. L. Lee, R. K. Shiue and S. K. Wu, The Microstructual Evolution of Infrared Brazed Fe3Al by BNi-2 Braze Alloy, Intermetallics , 11(2003)187. [34] R. K. Shiue, S. K. Wu and Y. L. Lee, Transient Microstructural Evolution of Infrared Brazed Fe3Al Intermetallics Using Aluminum Foil, Intermetallics, 13( 2005)818. [35] Y. Li, R. K. Shiue, S. K. Wu and L. M. Wu, Infrared Brazing Fe3Al Intermetallics Using the Cu Filler Metal, Intermetallics , 18(2010)422. [36] R. B. Chen and R. K. Shiue, A Wettability Study of Cu/Sn/Ti Active Braze Alloys on Alumina, Journal of Materials Science, 20(2001)1435. [37] AWS Brazing Manual, American Welding Society, 1990. [38] 陳耀堂,紅外線硬銲接合TiAl/Ti3Al介金屬與Ti-6Al-4V合金之研究,國立台灣大學材料科學與工程學研究所碩士論文,2008。 [39] A. Elrefaey and W. Tillmann, Solid State Diffusion Bonding of Titanium to Steel Using a Copper Base Alloy as Interlayer, Journal of Alloys and Compounds, 209(2009)2746. [40] C. van der Eijk, Z. K. Sallom And Odd M. Akselsen, Microwave Brazing of NiTi Shape Memory Alloy with Ag–Ti and Ag–Cu–Ti Alloys, Scripta Materialia, 58( 2008)779. [41] Y.V. Naidich, V.S. Zhuravlev, I.I. Gab, B.D. Kostyuk, V.P. Krasovskyy,A.A. Adamovskyy and N.Yu. Taranets, Liquid Metal Wettability and Advanced Ceramic Brazing, Journal of European Ceramic Society, 28(2008)717 [42] Youqiong Qina and Jicai Feng, Active Brazing Carbon/Carbon Composite to TC4 with Cu and Mo Composite Interlayers, Materials Science and Engineering A, 525(2009)181. [43] P. Villars, A. Prince and H. Okamoto, Handbook of Ternary Alloy Phas Diagrams, ASM International, 1995. [44] D. R. Milner and R. L. AppS. Introduction to Welding and Brazing , Pergamon Press, 1969. [45] 薛鈞尹,紅外線硬銲接合Ti-6Al-4V合金與異質合金之研究,國立台灣大學才學與工程學研究所碩士論文,2007。 [46] J. R. Davis, Stainless Steels, ASM International, 1994. [47] 詹志鴻,利用銀基填料紅外線硬銲接合異質金屬之研究,國立台灣大學機械工程研究所碩士論文,2003。 [48] 黃春憲,利用銀基填料紅外線硬銲接合Ti-6Al-4V與17-4PH S.S.或Al2O3之研究,國立台灣大學材料科學與工程研究所碩士論文,2005。 [49] K. P. Gupta, Phase Diagram of Ternary Nickel Alloys, Indian Institute of Metals, Calcutta, 1990. [50] W. S. Bennett and R. F. Hillyer, Welding Journal, Vacuum Brazing Studies on High Mn Stainless Steel, 53(1974)510. [51] 李垚,Fe3Al介金屬利用Ag/Cu紅外線硬銲接合之研究及新型低溫銀基應銲填料之開發,國立台灣大學材料科學與工程學研究所碩士論文,2009。 [52] 李怡鴻,Fe3Al介金屬利用金基填料紅外線硬銲接合之研究及新型銅基硬焊填料之開發,國立台灣大學機械工程研究所碩士論文,2010。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36873 | - |
dc.description.abstract | 本研究利用紅外線快速加熱之特性,以BAg-8(Ag-Cu共晶)及Ticusil(Ag-Cu-Ti)兩種銀基填料硬銲異質接合Ti50Ni50形狀記憶合金與CP-Ti或Ti-15-3合金,並進行潤濕行為、顯微組織變化與接點剪力強度之研究。以BAg-8填料於850℃接合Ti50Ni50與CP-Ti時,在填料與Ti50Ni50介面處會產生CuNiTi相,銲道中央則為Ag-rich相,填料與CP-Ti介面處則會產生一系列的Cu-Ti介金屬相。破壞主要沿著銲道中央之Ag-rich相延伸,屬於延性破壞,接點剪力強度約為250MPa。而隨著持溫時間的增長,CuTi2相層逐漸增厚,使破壞形式轉變為脆性與延性混和之破壞型式,接點剪力強度也隨著持溫時間的增長而有下降之趨勢。BAg-8填料於850℃接合Ti50Ni50與Ti-15-3合金時,其顯微組織與接合Ti50Ni50與CP-Ti者差距不大,唯有在填料與Ti-15-3介面處變為含有大量V元素之單一CuTi相層,破壞也為沿著銲道中央Ag-rich相延伸之延性破壞特徵,剪力強度也約為250MPa,且不隨著持溫時間的增長而有下降之趨勢。以Ticusil填料於950℃接合Ti50Ni50與CP-Ti或Ti-15-3合金時,隨著持溫時間增長,銲道中逐漸轉變為以Ti2Ni為主相之顯微組織,破壞時沿著銲道中央之Ti2Ni相延伸,屬脆性破壞,剪力強度在200~300MPa之間。本研究同時開發三種的Cu-Mn-Ni填料接合304沃斯田鐵系不鏽鋼或是422麻田散鐵系不鏽鋼,此三種Cu-Mn-Ni填料之Cu/Mn比為共晶成分比,而Ni之添加量分別為3、5、10wt.%,研究顯示接合此兩種不鏽鋼其銲道顯微組織皆為單一(Cu,γMn)相,破壞時均由銲道中央之凝固縮孔起始,沿著(Cu,γMn)相延伸,屬延性破壞,接點剪力強度在210~280MPa之間。研究中也發現隨著填料中Ni之增加,其接合介面處之裂痕會逐漸消失,當Ni元素增至10wt.%時,於接合介面處已觀察不到裂紋。 | zh_TW |
dc.description.abstract | Wetting behavior、microstructural evolution and bonding strength of infrared brazed Ti50Ni50/CP-Ti and Ti50Ni50/Ti-15-3 alloy using two Ag-based fillers are studied.For using BAg-8 filler brazed CP-Ti and Ti50Ni50, the brazed joint mainly consists of Ag-rich matrix and many interfacial layers are observed including Ti2Cu、TiCu、Ti3Cu4、TiCu4 and CuNiTi layers. The brazed joint is mainly fractured along the central Ag-rich phase in which the fracture exhibits ductile mode with the shear strength of 250MPa . Raising the brazing time will deteriorate the strength due to the fracture mode transfers to ductile/brittle mixing mode caused by the thicker interficial Ti2Cu layer. For using BAg-8 filler brazed Ti50Ni50 and Ti-15-3 alloy, microstructure is smiliar to the joint of Ti50Ni50 and cp-Ti. The only differenece is the interficial layer between Ti50Ni50 and Ti-15-3 alloy is TiCu layer. Using Ticusil infrared brazed CP-Ti(Ti-15-3) and Ti50Ni50 at 950oC, the brazed joint is full of intermetallic phases which lead the fracture mode to brittle with the shear strength of 200~300 Mpa. For infrared brazed 304 and 422 stainless steels(SS) using CuMnNi brazes, a (Cu,γMn) primary phase is found in the brazed joint. Solidification shrinkage voids are also observed in the central region of the joint and the fracture mode along these central voids is ductile with the shear strength of 210~ 280MPa. The CuMnNi brazes can effectively wet all SS at appropriate temperatures and the interfacial cracks in between braze and substrate are greatly reduced with increasing the Ni addition in CuMnNi braze. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:20:21Z (GMT). No. of bitstreams: 1 ntu-100-R98527001-1.pdf: 19960464 bytes, checksum: a8bba26992673dc98852d019efe06fb7 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
口試委員審定書 ii 致謝 iv 中文摘要 vi 目錄 x 第一章 前言 1 第二章 文獻回顧 3 2-1 不鏽鋼 3 2-1-1 不鏽鋼性質 3 2-1-2 不鏽鋼的硬銲接合 5 2-2 β鈦合金Ti-15-3與CP-Ti 6 2-2-1CP-Ti的性質 6 2-2-2 β鈦合金Ti-15-3的性質 6 2-2-3 CP-Ti與鈦合金的硬銲接合 7 2-3 Ti50Ni50記憶合金 8 2-3-1 Ti50Ni50的性質 8 2-3-2 Ti50Ni50的硬銲接合 9 2-4 硬銲填料 10 2-4-1 硬銲填料的選擇 10 2-4-2 BAg-8硬銲填料 11 2-4-3 Ticusil硬銲填料 11 2-5 紅外線接合製程 12 2-5-1紅外線加熱原理 12 2-6 硬銲接合製程 13 2-7潤濕特性 14 第三章 實驗方法 31 3-1 基材之試片準備 31 3-1-1不鏽鋼 31 3-1-2 CP-TI基材 31 3-1-3 Ti-15-3基材 31 3-1-4 Ti50Ni50基材 32 3-2 硬銲填料之準備 33 3-2-1 Ticusil 與 BAg-8硬銲填料 33 3-2-2 CuMnNi硬銲填料 33 3-2-3 潤濕小球準備 34 3-3 紅外線硬銲接合製程 34 3-3-1 實驗設備 34 3-3-2 金相與剪力試片硬銲接合實驗 35 3-3-3 動態潤濕角量測試驗 35 3-3-4 持溫時間與溫度之控制 36 3-4 硬銲試片之分析 36 3-4-1 分析前之處理 36 3-4-2 剪力試驗 36 3-4-3 掃描式電子顯微鏡 37 3-4-3 電子探束分析儀(EPMA) 37 3-5 實驗流程 37 第四章 銀基填料紅外線硬銲接合CP-Ti與Ti50Ni50 47 4-1 前言 47 4-2 不同Ag基填料對Ti50Ni50基材的潤濕性與顯微組織分析 48 4-3 不同Ag基填料對CP-Ti基材的潤濕性與顯微組織分析 49 4-4 BAg-8填料紅外線接合CP-Ti基材與Ti50Ni50基材的顯微組織分析 51 4-5 Ticusil填料紅外線接合CP-Ti基材與Ti50Ni50基材的顯微組織分析 52 4-6 利用銀基填料紅外線接合CP-Ti基材與Ti50Ni50基材之剪力強度 53 4-7 本章結論 55 第五章 銀基填料紅外線硬銲接合Ti-15-3合金與Ti50Ni50 95 5-1 前言 95 5-2 不同Ag基填料對Ti-15-3基材的潤濕性與顯微組織分析 95 5-3 BAg-8填料紅外線接合Ti-15-3基材與Ti50Ni50基材的顯微組織分析 98 5-4 Ticusil填料紅外線接合Ti-15-3基材與Ti50Ni50基材的顯微組織分析 99 5-5 銀基填料紅外線接合Ti-15-3基材與Ti50Ni50基材之機械強度分析 100 5-6 本章結論 101 第六章 CuMnNi系列合金填料紅外線硬銲接合不鏽鋼之研究 137 6-1 前言 137 6-2 CuMnNi硬銲填料箔片的成分分析 138 6-3 CuMnNi合金填料硬銲304S.S之潤濕性與橫截面顯微組織觀察 139 6-4 CuMnNi合金填料硬銲304S.S剪力強度與接點顯微組織分析 140 6-5 CuMnNi合金填料硬銲422S.S剪力強度與接點顯微組織分析 142 6-6 本章結論 143 第七章 結論 177 7-1銀基填料紅外線硬銲接合CP-Ti與Ti50Ni50 177 7-2銀基填料紅外線硬銲接合Ti-15-3合金與Ti50Ni50 178 7-3 CuMnNi系列合金填料紅外線硬銲接合不鏽鋼之研究 179 參考文獻 181 | |
dc.language.iso | zh-TW | |
dc.title | 紅外線硬銲接合Ti50Ni50/純Ti或Ti-15-3合金及開發新型銅基填料之研究 | zh_TW |
dc.title | The Study of Infraed Brazing Ti50Ni50 and Pure Ti or Ti-15-3 Alloy and The Development of Novel Cu-based Braze Fillers | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 薛人愷 | |
dc.contributor.oralexamcommittee | 王建義,薄慧雲 | |
dc.subject.keyword | 紅外線硬銲接合,Ti50Ni50記憶合金,Ti-15-3合金,CP-Ti,不鏽鋼,銀基填料,銅錳基填料,潤濕特性,接合強度,顯微組織, | zh_TW |
dc.subject.keyword | Infrared brazing,Ti50Ni50,CP-Ti,Ti-15-3 alloy,Ag-based fillers,CuMnNi fillers,wetting behavior,bonding strength,microstructure, | en |
dc.relation.page | 182 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 19.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。