請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36859
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 游 若 ? | |
dc.contributor.author | Sui-Ting Chen | en |
dc.contributor.author | 陳穗葶 | zh_TW |
dc.date.accessioned | 2021-06-13T08:19:37Z | - |
dc.date.available | 2005-09-01 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-19 | |
dc.identifier.citation | 參考文獻
于守洋, 崔洪斌。2003。新世紀保健食品全集。台北。九州圖書文物有限公司。 王舒徽。2000。原生菌之機能性介紹。食品工業。32: 741-51 李福臨。2000。乳酸菌分類之研究近況。食品工業。32(8): 36-42。 沈明來。1999。試驗設計學。九州圖書公司。台北。 楊媛絢。1998。原生保健性菌種(probiotics)與益生助生質(prebiotics)之應用。食品工業。30(2): 11-22。 廖啟成。1994。多重面貌的乳酸菌產品。健康世界。206: 62-70。 廖啟成。1998。乳酸菌之分類及應用。食品工業。30(2): 1-10。 Abhijit SD, Yogesh SS, Dilip RR. 1998. Selenomonas lipolytica sp. nov., an obligately anaerobic bacterium possessing lipolytic activity. Int J Syst Bacteriol 48: 783-791. Abi-Hanna A, Saavedra J, Moore N, Yolken R. 1998. Effect of long term consumption of infant formulas with Bifidobacteria (B) and S. thermophilus (ST) on stool patterns and diaper rash in infants. J Pediatr Gastroenterol Nutr 27: 483. AOAC. 1984. Official Methods of Analysis of the Association of Official Analytical Chemists. Washington, DC, USA. Ariga H, Urashima T, Michihata E, Ito M, Morizon N, Kimura T, Takahashi S. 1992. Extracellular polysaccharide from encapsulated Streptococcus salivarius subsp. thermophilus OR 901 isolated from commercial yogurt. J Food Sci 57: 625-628. Arunachalam KD. 1999. Role of bifidobacteria in nutrition, medicine and technology. Nutr Res 19: 1559-1597. Bauer H, Sigarlakie E, Faure JC. 1975. Scanning and transmission electron microscopy of three strains of Bifidobacterium. Can J Microbiol 21: 1305-1307. Bello FD, Walter J, Hertel C and Hammes WP. 2001. In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol 24: 232-237. Bouzar F, Cerning J, Desmazeaud M. 1997. Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yogurt production. J Diary Sci 80: 2310-2317. Brashears MM, Gilliland SE, Buck LM. 1998. Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J Dairy Sci 81: 2103-2110. Broadbent JR, McMahon DJ, Oberg CJ, Welker DL. 2001. Use of exopolysaccharide-producing cultures to improve the functionality of law fat cheese. Int Dairy J 11: 433-439. Cerning J. 1990. Exocellular exopolysaccharides by lactic acid bacteria. FEMS Microbiol Rev 87: 113-130. Cerning J, Bouillanne C, Landon M, Desmazeaud MJ. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J Dairy Sci 75: 692-699. Cerning J, Renard CMGC, Thibault JF, Bouillanne C, Landon M, Desmazeaud M, Topisirovic L. 1994. Carbon source requirements for exopolysaccharide produced by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl Environ Microbiol 60: 3914-3919. Cerning J. 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le Lait 75: 463-472. de Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23: 153-177. de Vuyst L, Vanderveken F, van de Ven S, Degeest B. 1998. Production and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J Appl Microbiol 84: 1059-1068. Degnan BA, Macfarlane GT. 1993. Transport and metabolism of glucose and arabinose in Bifidobacterium breve. Arch Microbiol 160: 144-151. Deguchi Y, Morishita T, Mutai M. 1985. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric Biol Chem 49: 13-19. Doco T, Wieruszeski J-M, Fournet B. 1990. Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr Res 198: 313-321. Duboc P, Mollet B. 2001. Applications of exopolysaccharides in the dairy industry. Int Dairy J 11: 759-768. Ebube WK, Udeala OK, Ghobashy AA. 1992. Isolation and characterization of a novel polysaccharide from Bacillus licheniformis NICB 11634. J Indust Microbiol 9: 229-245. Faber EJ, Zoon P, Kamerling JP, Vliegenthart JFG. 1998. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr Res 310: 269-276. Fooks LJ, Fuller R and Gibson GR. 1999. Prebiotics, probiotics and human gut microbiology Int Dairy J 9: 53-61. Frazier WC, Westhoff DC. 1988. Microorganisms important in food microbiology. In: Frazier WC, Westhoff DC, eds. Food Microbiology. 4th edn. New York: McGraw-Hill Book Co. Fukushima Y, Kawata Y, Hara H, Terada A, Mitsuoka T. 1998. Effect of a probiotic formula [containing Bifidobacterium BB-12] on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 42: 39-44. Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol 66: 365-378. Gamar L, Blondeau K, Simonet J. 1997. Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. J Appl Microbiol 83: 281-287. Gancel F, Novel G. 1994. Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures. 2. Distinct modes of polymer production and degradation among clonal variants. J Dairy Sci. 77: 689-695. Gassem MA, Sims KA, Frank JF. 1997a. Exopolysaccharides production from whey lactose by fermentation with Lactobacillus delbrueckii subsp. bulgaricus. J Food Sci 62: 171-173. Gassem MA, Sims KA, Frank JF. 1997b. Extracellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR in a continuous fermentor. Lebensm Wiss Technol 30: 273-278. Gibson GR, Wang X. 1994. Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol Lett 118: 121-128. Gibson GR, Roberforid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125: 1401-1412. Gibson GR, Fuller R. 2000. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J Nutr 130: 391s-395s. Gilliland SE, Kim HS. 1984. Effect of viable starter culture bacteria in yoghrt on lactose utilization in humans. J Dairy Sci 67:1-6. Gilliland SE, Walker DK. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J Dairy Sci 73: 905-911. Gismondo MR, Drago L, Lombardi A. 1999. Review of probiotics available to modify gastrointestinal flora. Int J Antimicrob Agents 12: 287-292. Goldin BR, Gorbach SL. 1984. The effect of milk and Lactobacillus feeding on human intestinal bacterial enzyme activity. Am J Clin Nutr 39: 756-761. Gomes AMP, Malcata FX. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci 10: 139-157. Goodenough ER, Kleyn DH. 1976. Influence of viable yogurt microflora on digestion of lactose by rat. J Dairy Sci 59: 601-606. Grobben GJ, Boels IC, Sikkema J, Smith MR, de Bont JAM. 2000. Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. J Dairy Res 67: 131-135. Grobben GJ, Sikkema J, Smith MR, de Bont JAM. 1995. Production of extracellular polysaccharides by Lactobacillus delbrueckii spp. bulgaricus NCFB 2772 grown in a chemical defined medium. J Appl Bacteriol 79: 103-107. Grobben GR and Roberfroid MB. 1995. Dietary modulation of the human colonic microbiotia: Introducing the concept of prebiotics. J Nutr 125: 1401-1412. Grobben GJ, Smith MR, Sikkema J, Bont JAM. 1996. Influence of fructose and glucose on the production of exopolysaccharide and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772. Appl Microbiol Biotechnol 46: 279-284. Halpern GM, Veruwink KG, Van de Water J, Keen CL, Gershwin ME. 1991. Influence of long-term yogurt consumption in young adults. Int J Immunother 7: 205-210. Hammes WP and Hertel C. 2002. Research approaches for pre- and probiotics: Challenges and outlook. Food Res Int 35: 165-170. Haskard C, Binnion C, Ahokas J. 2000. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem Biol Interact 128: 39-49. Hayatsu H, Hayatsu T. 1993. Suppressing effect of Lactobacillus casei administration on the urinary mutagenicity arising from ingestion of fried ground beef in the human. Cancer Lett 73: 173-179. Hirayama K, Rafter J. 2000. The role of probiotic bacteria in cancer prevention. Microbes Infect 2: 681-686. Hirota T. 1990. The anticipating bioactivity functions of Lactobacillus in dairy products. New Food Ind 32: 9-17. Holdeman LV, Cato EP, Moore WEC. 1977. Anaerobe laboratory manual, 4th edn. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg. Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis HJ. 1998. Overview of gut flora and probiotics. Int J Food Microbiol 41: 85-101. Hopkins MJ, Cummings JH and Macfarlane GT. 1998. Inter-species differences in maximum specifie growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J Appl Microbiol 85: 381-386. Hose H, Sozzi T. 1991. Biotechnology group meeting probiotics - factor fiction. J Chem Technol Biotechnol 51: 540-544. Hosono A, Lee J, Ametani A, Natsume M, Hirayama M, Adachi T and Kaminogawa S. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotech Biochem 61: 312-316. Hull RR, Conway PL, Evans AJ. 1992. Probiotic food - a new opportunity. Food Aust 44: 112-113. Jiang T, Mustapha A, Savaiano DA. 1996. Improvement of lactose digestion in humans by injection of unfermented milk containing Bifidobacterium longum. J Dairy Sci 79: 750-757. Kasper H. 1998. Protecion against gastrointestunal disease - present facts and future developments. Int J Food Microbiol 41: 127-131. Kimmel SA, Roberts RF, Ziegler GR. 1998. Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl Environ Microbiol 64: 659-664. Kitazawa H, Yamaguchi T, Miura M, Saito T and Itoh H. 1993. β-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, viili. J Dairy Sci 76: 1514-1519. Kitazawa H, Ishii Y, Uemura J, Kawai Y, Saito T, Kaneko T, Noda K, Itoh T. 2000. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiol 17: 109-118. Klaver FAM, Meer RV. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol 59: 1120-1124. Knoshaug EP, Ahlgrent JA, Trempy JE. 2000. Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris ropy352. J Dairy Sci 83: 633-640. Kojic M, Vujcic M, Banina A, Cocconcelli P, Cerning J, Topisorovic L. 1992. Analysis of polysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl Environ Microbiol 58: 4086-4088. Law A, Gu Y, Marshall V. 2001. Biosynthesis, characterization, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19: 597-625. Lee YK, Salminen S. 1995. The coming of age of probiotics.Trends in Food Sci Technol. 6: 241-245 Lidbeck A, Overvik E, Rafter J, Nord CE, Gustafsson JA. 1992. Effect of Lactobacillus acidophilus supplements on mutagen excretion in feces and urine in humans. Microbial Ecol Health Dis 5: 59-67. Lilly DM, Stillwell RH. 1965. Probiotics: Growth promoting factors produced by microorganisms. Science 147: 747-748. Lo PR, Yu RC, Chou CC and Huang EC. 2003. Determinations of the antimutagenic activities of several probiotic bifidobacteria under acidic and bile conditions against benzo[a]pyrene by a modified Ames test. Int J Food Microbiol (paper accepted). Lo PR, Yu RC, Chou CC and Tsai YH. 2002. Antimutagenic activity of several probiotic bifidobacteria against benzo[a]pyrene. J Biosci Bioeng 94: 148-153. Looijesteijn PJ, Trapet L, de Vries E, Abee T and Hugenholtz J. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 64: 71-80. Looijesteijn PJ, van Casteren WHM, Tuinier R, Dosewijk-Voragen CHL and Hugenholtz J. 2000. Influence of different substrate limitations on the yield, composition adn molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. J Appl Microbiol 89: 116-122. Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ, Broadbent JR. 1998. Role of Streptococcus thermophilus MR-lC capsular exopolysaccharide in cheese moisture retention. Appl Environ Microbiol 64: 2147-2151. Macura D, Townsley PM. 1984. Scandinavian ropy milk-identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion. J Dairy Sci 67: 735-744. Majamaa H, Isolauri E. 1997. Probiotics: A novel approach in the management of food allergy. J Allergy Clin Immunol 99: 179-185. Manca de Nadra MC, Strasser de Saad AM, Pesce de Ruiz Holgado AA, Oliver G. 1985. Extracellular polysaccharide produced by Lactobacillus bulgaricus CRL 420. Milchwissenschaft 40: 409-411. Marteau PR, de Vrese M, Cellier CJ, Schrezenmeir J. 2001. Protection from gastrointestinal disease with the use of probiotics. Am J Clin Nutr 73: 430s-436s. Marshall VM, Cowie EN, Morerons RS. 1995. Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330. J Dairy Res 62: 621-628. Marshall VM, Rawson HL. 1997. Effects of exo-polysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int J Food Sci Technol 34: 137-143. Matsuzaki T, Yamazaki R, Hashimoto S, Yokokura T. 1997. Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J 44: 357-365. Mattila-Sandholm T, Blum S, Collins JK. 1999. Probiotics: Towards demonstrating efficacy. Trends Food Sci Tech 10: 393–399. Mitsuoka T. 1990. Intestinal flora and human health. New Food Ind 32:1-8. Mitsuoka T. 2000. Significance of dietary modulation of intestinal flora and intestinal environment. Biosci Microflora 19: 15-25. Mlobeli NT, Gutierrez NA, Maddox IS. 1998. Physiology and kinetics of Bifidobacterium bifidum during growth on different sugars. Appl Microbiol Biotechnol 50: 125-128. Molder HW, McKeller RC, Yaguchi M. 1990b. Bifidobacteria and bifidogenic factors. Inst Food Sci Technol J 23: 29-41. Mozzi F, de Giori GS, Oliver G, de Valdez GF. 1995. Exopolysaccharide production by Lactobacillus casei I. Influence of salts. Milchwissenschaft 50: 186-188. Mozzi F, de Giori GS, Oliver G, de Valdez GF. 1996. Exopolysaccharide production by Lactobacillus casei under controlled pH. Biotechnol Lett 18: 435-439. Mustapha A, Jiang T, Savaiano DA. 1997. Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: Influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus. J Dairy Sci 80: 1537-1545. Nagaoka M, Hashimoto S, Watanabe T, Yokokura T and Mori Y. 1994. Anti-ulcer effects of lactic acid bacteria and their cell-wall polysaccharides. Biol Pharm Bull 17: 1012-1017. Naidu AS, Bidlack WR, Clemens RA. 1999. Probiotic spectra of lactic acid bacteria. Food Sci Nutr 38: 13-126. Nakajima H, Suzuki Y, Kaizu H, Hirota T. 1992. Cholesterol lowering activity of ropy fermented milk. J Food Sci 57: 1327-1329. Navarini L, Abatangelo A, Bertocchi C, Conti E, Bosco M, Picotti F. 2001. Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20. Int J Biol Macromol 28: 219-226. Oda M, Hasegawa H, Komatsu S, Kambe M and Tsuchiya F. 1983. Anti-tumor polysaccharide from Lactobacillus sp. Agric Biol Chem 47: 1623-1625. Ogawa N, Statsu H, Watanabe H, Fukatya M, Tsukamoto Y, Miyamoto Y, Shimizu M. 2000. Acetic acid suppresses the increase in disaccharidases activity that occurs during culture of caco-2 cell. J Nutr 130: 507-513. Ouwehand AC, Salminen S, Isolauri E. 2002. Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82: 279-289. Parker RB. 1974. Probiotics, the other half of the antibiotic story. Anim Nutr Health 29: 4-8. Park SY, Ji GE, Ko YT, Jung HK, Ustunol Z, Pestka J. 1999. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264-7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int J Food Microbiol 46: 231-241. Rasic JL, Kurmann JA. 1983. Bifidobacteria and their role. Basel: Birkhauser Verlag. Rastall R A and Maitin V. 2002. Prebiotics and synbiotics: Towards the next generation. Curr Opin Biotechnol 13: 490-496. Renner HW, Münzner R. 1991. The possible role of probiotics as dietary antimutagens. Mutat Res 262: 239-245. Robijn GW, van de Berg DJC, Haas H, Kamerling JP, Vligenthart JFG. 1995. Determination of the structure of the exopolysaccharide produced by Lactobacillus sake 0-1. Carbohydr Res 276: 117-136. Robijn GW, Gallego RG, van den Berg DJC, Haas H, Kamerling JP, Vliegenthart JFG. 1996. Structural characterisation of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433. Carbohydr Res 288: 203-218. Roos NM and Katan MB. 2000. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am J Clin Nutr 71: 405-411. Ruas-Madiedo P, Hugenholtz J, Zoon P. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12: 163-171. Saarela M, Lahteenmaki L, Crittenden R, Salminen S, Mattila-Sandholm T. 2002. Gut bacteria and health foods-the European perspective. Int J Food Microbiol 78: 99-117. Salminen S. 1999. Probiotics: scientific support for use. Food Technol 53: 66. Salminen S, Isolauri E, Salminen E. 1996. Probiotics and stabilization of the gut mucosal barrier. Asia Pacific J Clin Nutr 5: 53-56. Scheinbach S. 1998. Probiotics: Functionality and commercial status. Biotechnol Adv 16:581-608. Sebastiani H, Zelger G. 1998. Texture formation by thermophilic lactic acid bacteria. Milchwisssenschaft 53: 15-19. Shornikova AV, Casas IA, Isolauri E, Mykkanen H, Vesikari T. 1997. Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children. J Pediatr Gastroenterol Nutr 24: 399-404. Siitonen S, Vapaatalo H, Salminen S, Gordin A, Saxelin M, Wikberg R, Kirllola A. 1990. Effect of Lactobacillus GG yoghurt in prevention of antibiotics associated diarrhea. Ann Med 22: 57-59. St-Onge MP, Farnworth ER, Jones PJH. 2000. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. Am J Clin Nutr 71: 674-681. Sutherland IW. 1972. Bacterial exopolysaccharides. Adv Microb Physiol 8: 143-212. van Casteren WHM, Dijkema C, Schols HA, Beldman G and Voragen AGJ. 1998. van de Water J, Keen CL, Gershwin ME. 1999. The influence of chronic yogurt consumption on immunity. J Nutr 129: 1492s-1495s. van den Berg DJC, Robijn GW, Janssen AC, Giuseppin MLF, Vreeker R, Kamerling JP, Vliegenthart JFG, Ledeboer AM, Verrips CT. 1995. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl Environ Microbiol 61: 2840-2844. van Geel-Schuttern GH, Flesch F, ten Brink B, Smith MR, Dijkhuizen L. 1998. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl Microbiol Biotechnol 50: 697-703. Welman AD and Maddox LS. 2003. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol 21: 269-274. Yang Z, Staaf M, Huttuen E, Widmalm G. 2000. Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus K16. Carbohydr Res 329: 465-469. Yamamoto Y, Murosaki S, Yamauchi R, Kato K, Sone Y. 1994. Structural study on an exocellular polysaccharide produced by Lactobacillus helveticus TY1-2. Carbohydr Res 261: 67-78. Yukuchi H, Goto T, Okongi S. 1992b. Fermented milks, lactic drinks and intestinal microflora. In: Nakazawa Y, Hosono A, eds. Functions of Fermented Milk. New York: Elsevier Appl Sci. Yun JW. 1996. Fructooligosaccharides-Occurrence, preparation, and application. Enzyme Microb Technol 19: 107-117. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36859 | - |
dc.description.abstract | 摘要
本實驗以乳酸菌於MRS培養基所產的胞外多醣為研究對象,檢測其產量與對雙叉桿菌之助生性,選取生產較佳助生性胞外多醣之乳酸菌,培養於添加10%不同糖類MRS培養基,檢測胞外多醣產量與助生性,並與果寡糖益菌助生質比較;再進行胞外多醣之成份分析。結果顯示乳酸桿菌在MRS培養基生產之胞外多醣產量由高至低為Lactobacillus plantarum BCRC 11697(930 mg/L),L. delbrueckii subsp. bulgaricus BCRC 10696,L. rhamnosus GG BCRC 16000,L. casei,L. fermentum,L. helveticus,L. acidophilus BCRC 14079,L. salivarius BCRC14759(450 mg/L)。L. casei、L. acidophilus BCRC 14079所產之胞外多醣,較L. helveticus、L. salivarius BCRC14759所產之胞外多醣對雙叉桿菌有較佳之助生效果。L. casei於MRS-glc培養基,所得之胞外多醣對B.infantis BCRC14602、B. adolescentis BCRC14606、B. bifidum BCRC14615,助生性較佳,L. casei 於MRS-fru培養基培養所得之胞外多醣對B. longum BCRC14634、B. lactis Bb-12,助生性佳,且效果都比果寡糖佳。乳酸桿菌之胞外多醣為異質多醣,50%以上為半乳糖、14%~40%為葡萄糖及其他糖類。L. casei在添加10%不同糖類MRS培養基生產之胞外多醣也為異質多醣,醣類組成60%~80%為半乳糖、14%~30%為葡萄糖及其他糖類。 | zh_TW |
dc.description.abstract | Abstract
In this study, were investigated the yields and prebiotic effects of exopolysaccharides(EPS)produced by Lactic acid bacteria grown in MRS media on the growth of Bifidobacteria. Choose one lactic acid bacteria whose EPS have the best prebiotic effects. Test the yields and prebiotic effects of the EPS produced by this lactic acid bacteria grown in modified-MRS media which contain 10% various sugars and compare to fructooligosaccharides(FOS). Finally analyze the composition of EPS. The results indicated that the yields of EPS produced by LAB grown in MRS media were from Lactobacillus plantarum BCRC 11697(930 mg/L), L. delbrueckii subsp. bulgaricus BCRC 10696, L. rhamnosus GG BCRC 16000, L. casei, L. fermentum, L. helveticus, L. acidophilus BCRC 14079 to L. salivarius BCRC14759 ( 450 mg/L). Prebiotic effects of EPS produced by Lactobacillus acidophilus BCRC 14079 and L. casei were better than L. helveticus and L. salivarius BCRC14759. Prebiotic effects of EPS produced by L. casei grown in MRS-glc media toward B.infantis BCRC14602, B. adolescentis BCRC14606, and B. bifidum BCRC14615 were better than FOS. Prebiotic effects of EPS produced by L. casei grown in MRS-fru media toward B. longum BCRC14634 and B. lactis Bb-12 were better than FOS. EPS produced by LAB were heteropolysaccharides and contains 50% galactose, from 14% to 40% glucose and other sugars. EPS produced by L. casei grown in modified-MRS media which contain 10% various sugars were heteropolysaccharides and contains from 60% to 80% galactose, from 14% to 30% glucose and other sugars. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:19:37Z (GMT). No. of bitstreams: 1 ntu-94-R92641032-1.pdf: 805640 bytes, checksum: b999ae9d95b417016adef2560ce13e6b (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄
頁次 壹、前言………………………………………………………………….1 貮、文獻整理………………………………………………………….…3 一、乳酸菌之簡介………………………………………………….. 3 二、乳酸菌之分類…………………………………………………...4 三、雙叉桿菌之簡介………………………………………………...5 四、益生菌…………………………………………………………...7 (一) 益生菌之簡介…………………………………………….....8 (二) 理想益生菌之特性……………………………………….....9 (三) 益生菌之應用…………………………………….………..11 (四) 益生菌之安全性評估……………………………………...12 (五) 益生菌的生理機能及健康效益…………………………...13 1. 增加營養價值……………………………………………14 2. 合成維生素………………………………………………14 3. 改善乳糖不耐症的代謝障礙……………………………14 4. 避免酸中毒………………………………………………16 5. 維持腸道內正常微生物菌相……………………………16 6. 改善便秘情形……………………………………………17 7. 預防腹瀉…………………………………………………17 8. 降低血清膽固醇…………………………………………18 9. 改善嬰幼兒的尿布疹……………………………………18 10. 降低糖尿病之發生率……………………………………18 11. 防止肝病變………………………………………………19 12. 吸附黃麴毒素……………………………………………19 13. 調節免疫…………………………………………………19 14. 減緩老化…………………………………………………20 15. 抗腫瘤……………………………………………………20 五、乳酸菌胞外多醣……………………………..……………….21 (一) 乳酸菌胞外多醣之分類、組成及結構…………………..22 (二) 乳酸菌生產胞外多醣之特性……………………………..26 (三) 乳酸菌胞外多醣之產量…………………………………..27 (四) 乳酸菌胞外多醣之應用…………………………………..29 六、助生質………………………………………………….……..29 七、果寡糖(Fructooligosaccharides)簡介…………………..…31 八、果寡糖的特點…………….…………………………………..31 (一) 調整腸道菌叢生態…………………………………….…34 (二) 控制血脂肪………………………………….……………34 (三) 寡糖有甜味卻沒有精緻糖的害處………………….……34 參、材料與方法…………………………………………………….....35 一、實驗材料…………………………………………………….35 (一) 試驗菌株………………………………………………..35 (二) 培養基…………………………………………………..36 (三) 藥品……………………………………………………..36 (四) 儀器設備與器材……………………………………..…36 二、實驗方法………………………………………………...…..38 (一) 菌株之保存與活化……………………………………..38 (二) 胞外多醣的合成與產量………………………………..39 (三) 胞外多醣的助生性試驗…………………………..……40 (四) 胞外多醣單醣組成之測定……………………………..40 (五) 統計分析方法……………………………………..……41 肆、結果與討論…………………………………..…………………...42 一、八株乳酸桿菌在MRS培養基中胞外多醣之產量…….…..42 二、八株乳酸桿菌產胞外多醣對雙叉桿菌生長之影響..………42 (一) 八株乳酸桿菌產胞外多醣對B. infantis BCRC14602生長之影響……………………………………………………44 (二) 八株乳酸桿菌胞外多醣對B. adolescentis BCRC 14606生長之影響…………………………………………………44 (三) 八株乳酸桿菌胞外多醣對B. bifidum BCRC 14615生長之影響………………………………………………………47 (四) 八株乳酸桿菌胞外多醣對B. longum BCRC 14634生長之影響………………………………………………………47 (五) 八株乳酸桿菌胞外多醣對B. breve BCRC 11846生長之影響…………………………………………………………47 (六) 八株乳酸桿菌胞外多醣對B. lactis Bb-12生長之影響…………………………………………………………47 三、八株乳酸桿菌產胞外多醣對雙叉桿菌比生長率(specific growth rate)之影響……………………………………………..……52 四、L. casei在含10%不同糖類之MRS培養基中,胞外多醣之產量…………………………………………….…………………54 五、L. casei於添加10%不同糖類MRS培養基生成之胞外多醣,對雙叉桿菌生長之影響…………………….…………………56 (一) L. casei在含不同糖類MRS中所生成之胞外多醣,對B.infantis BCRC14602生長之影響………………………56 (二) L. casei在含不同糖類MRS中所生成之胞外多醣,對B. adolescentis BCRC 14606生長之影響……………………58 (三) L. casei在含不同糖類MRS中所生成之胞外多醣,對B. bifidum BCRC14615生長之影響…………………………58 (四) L. casei在含不同糖類MRS中所生成之胞外多醣,對B. longum BCRC14634生長之影響…………………………58 (五) L. casei在含不同糖類MRS中所生成之胞外多醣,對B. breve BCRC11846生長之影響…………………………...62 (六) L. casei在含不同糖類MRS中所生成之胞外多醣,對B. lactis Bb-12生長之影響…………………………………62 六、L. casei在含不同糖類MRS培養基生成之胞外多醣對雙叉桿菌生長期間比生長率(specific growth rate)之影響………65 七、L. casei在含10%不同糖類MRS培養基中生成胞外多醣醣類組成……………………………………………………………65 八、L. casei在含10%不同糖類MRS培養基中生成胞外多醣醣類組成……………………………………………………………….68 伍、結論……………………………………………………………………71 參考文獻………………………………………………………………………73 | |
dc.language.iso | zh-TW | |
dc.title | 數株乳酸菌胞外多醣對雙叉桿菌生長之助生性研究 | zh_TW |
dc.title | Prebiotic effects of several lactics’ exopolysaccharides
on the growth of bifidus | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 丘 志 威,蔡 國 珍,潘 崇 良,周 正 俊 | |
dc.subject.keyword | 乳酸菌,胞外多醣,雙叉桿菌,助生性, | zh_TW |
dc.subject.keyword | lactic acid bacteria,exopolysaccharides,bifidus,prebiotic effects, | en |
dc.relation.page | 88 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 786.76 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。