請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36778
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王文雄 | |
dc.contributor.author | Jien-Ting Wu | en |
dc.contributor.author | 吳建廷 | zh_TW |
dc.date.accessioned | 2021-06-13T08:15:31Z | - |
dc.date.available | 2005-07-26 | |
dc.date.copyright | 2005-07-26 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-20 | |
dc.identifier.citation | 1.A.M. Hall, Met. Prog. ,87,1965,p. 178-192
2.W.M. Garrison, JOM, 42, No.5,1990, pp20-24 3.”Structure and Properties of ultrahigh-strength steel”, ASTM, STP 370, Philadelphia, Pa, 1963. 4. R W K Honeycombe , and H.K.D.H. Bhaadeshia, Steels-Microstructure and Properties, 2nd Ed, Edward Arnold,1995. 5.George Krauss , Principles of Heat Treatment of Steel , ASM Book , 1980 , p.187. 6.H. W. Päxton and T. Kunitaka : Trans. TMS-AIME , Vol. 218 1960 , p.1003. 7.C. S. Robert , B. L. Averback and M. Cohen : Trans ASM , Vol. 45 ,1953 , p. 576. 8.R. M. Horn and Robert O. Ritchie : Metall. Trans.A.,Vol.9A , 1978 , p.1039. 9.C-B. Ma , T. Ando, D. L. Willamson and G. Krauss , Metall. Trans.A,Vol. 14A, 1983 , p.1033. 10.K. H. Jack and S. Wild : Nature , Vol. 212 ,1966 , p.248. 11.H. K. D. H. Bhadeshia , Worked Examples in the Geometry of Crystals , The Institute of Metals , 1987 , p.56 12.D. P. Koistinennhe , R.E.Marburger , Acta. Metall. , vol. 7 , 1959 ,p.59. 13.Cohen, Trans. Met. Soc. AIME, vol. 224, 1962, p.638. 14. G. V. Kurdjumov, G. Saches, Z. Phys., Vol.64, 1930, p.325. 15.Z. Nishiyama, Sci. Pert. Tohoku Univ., vol.23, 1934, p.325. 16.杜佳勳:台大材料所碩士論文, 1998, p.6.. 17.J.M. Marder and AR. Marger, Trans.ASM, vol.62,1969, p.1. 18.W.S.Owen, E.A.Wilson and T.Bell, High Strength Materials, p.167. 19.J.M. Christian, The Mechanism of Phase Transformation in Crystalline Solids, Inst. Of Metals, Monograph No.33, 1969 20.J.M. Chilton, C.J. Barton and G.R.Speich, J. Iron Steel Inst., vol.208,1970, p.184. 21.G.R. Speich and P.R. Swann, J. Iron Steel Inst., vol.203,1965, p.480. 22.A.R. Marder and G. Krauss, Trans. ASM, vol.62,1969, p957. 23.G.R. Speich, Trans. TMS-AIME, vol. 245,1969, p.2553. 24.R.W.K. Honeycombe, Proc. Memorial Lecture Metting, National Research Institute for Metals, Tokyo, 1966,p. 44. 25.R.G. Baker, J.Nutting, I.S.I. Special Report, No.64, 1959, p.1-22. 26.K.W. Andrews, D.J. Dyson, S.R.Keown, Interpretation of Election Diffraction Patterns, 1971. 27.J. M. Capus and G. Mayer:, J. Iron Steel Inst., Vol. 196, 1960, p.149. ; J. Iron Steel Inst., Vol. 201,1963, p.53. 28.S. K. Banerji, C. J. Mcmahon, Jr. and H. C. Feng , Metall. Trans.A.,Vol. 9A, 1978, p.237. 29.B. J. Shulz and C. J. McMahon , Jr. , American Society for Testing and Material,ASTM STP, Vol. 499 , 1972, p.104. 30.C. L. Briant, S. K. Banerji, and A. M. Ritter:Metall. Trans.A,Vol. 13A, 1982, p.1939. 31.M.A. Grossmann,Transactions American Institute of Mining and Metall. Engineers, Vol. 167, 1969, p.39. 32.A. Nakashima and J. F. Libsch,Trans. ASM, Vol. 53,1961, p.753 33.A. G. Allten and P. Payson,Trans ASM, Vol. 45,1953, p.498. 34.C. H. Shih, B. L. Averbach, and M. Cohen,Trans ASM, Vol. 48,1956, p.86. 35.L .S. Castleman, B. L. Averbach and M. Cohen,Trans. ASM, Vol. 44,1952, p.240. 36.M. Sarikaya, A. K. Jhingan and G. Thomas:Metall. Tran.A,Vol.14A, 1983, p.1121. 37.J. R. Low, Jr., D. F. Stein, A. M. Turkalo, andR. P. Laforce,Trans. TMS-AIME, Vol. 242,1968, p.14. 38.J. R. Rellick and C. J. McMahon, JR., Metall. Trans. Vol. 5, 1974, p.2439. 39.George E. Dieter, Materials Science and Engineering Series, Second Edition Published by McGraw-Hill Inc. , 1976 ,p.188; pp.342-344; p.340. 40.C. D. Lundin, K. K. Khan, D. Yang, WRC Bull.405, 1995, p1. 41.Jin Yu and C. J. McMahon, Metall. Tran.A, Vol. 11A, Feb, 1980, p.291-300 42.R. L. Rickett and J. M. Hodge, Proc. ASTM, 1951, V0l. 57, p. 931 43.H. Schrader, H. J. Wiester, and H. Shiepmann, Archiv. Eisenhuttenwesen, 1950,Vol. 21, p. 21 44.B. V. Narashima Rao and G. Thomas, Proc. Intern. Conf. Martensitic Transformations ICOMAT-79, Cambridge, MA(1979). 45.E. R. Park and V. F. Zachay, Engineering Fracture Mechanics, 7,1975, p.371. 46.D, Webster, Metall. Trans. 2,1971, p.1857. 47.Z. Nishyama, in:M. E. Fine, M. Meshii, C. M. Wayman(Eds.), Martensitic Transformation, Academic Press, 1978. 48.W. J. Harris and M. Cohen, Tran. AIME 180, 447(1949); Met. Tech. 15, T. P. No. 2446,1948, p.24. 49.M. Okamoto and R. Odaka, J. Jpn. Inst. Met. 16, 1952,p.81.. 50.S. Hanada, M. Izumiyama, and Y. Imai, Japan Inst. Metals, Fall Meeting,1970, p. 208. 51.H. Esser and H. Cornelius, Arch. Eisenhuttenwes. 7,,1934, p.693.. 52.George Krauss ,Mater. Sci. Eng. A273-275, 1990, p. 43 53.K. W. Andrews and D. F. Dyson, Interpretation of Electron Diffraction Pattern, 2nd ed, by Adam Hilger Ltd, London, 1971 54 George Krauss, ISIJ Int, Vol.35, 1995, p. 349 55.G. N. Haidemenopoulos, G. B. Olson, M. Cohen and K. Tsuzaki, Scripta Metall. Vol. 23, 1989, p. 207-212 56 G. N. Haidemenopoulos, M. Grujicic, G. B. Olson and M. Cohen, Acta Metall.Vol. 37, No.6, 1989, p. 1677-1682 57. G. N. Haidemenopoulos, A.N. Vasilakos, J. Alloys Compd 247,1997, p.128-133. 58.A. M. Sherman, G. T. Eldis, amd M. Cohen, Metall. Tran.A, Vol. 14A, 1983, p995-1005 59. Yoshiyuki Tomita and Kunio Okabayashi, Metall. Tran.A, Vol. 16A, 1985, p. 83-91 60. Yoshiyuki Tomita and Kunio Okabayashi, Metall. Tran.A, Vol. 16A, 1985, p.73-82 61. George F. Vander Voort, Metallography Principles and Practice, McGraw-Hill Book CO.,1984, p.219-223. 62.M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, published by British Steel Corporation, 1977, p.227. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36778 | - |
dc.description.abstract | 本實驗之主要目的乃在於尋求四種耐磨鋼:包括三種Fe-xNi-1.5%Cr-0.5%Mo(x分別為3、5及7%)及一種改良焊接性的Fe-5Ni%-1.0%Cr-0.5%Mo的最佳熱處理條件,其中包括了沃斯田鐵化溫度、淬火速率、深冷處理、回火溫度、等因素之配合。
經由機械性質(硬度、衝擊值)之測試及顯微組織(OM、TEM、SEM)的觀察來探討顯微組織與機械性質之關係,來瞭解回火組織之變態情形,進而掌握機械性質之變化,尤其是在回火組織中的碳化物析出的位置、種類、分佈與大小,其變化左右著硬度及韌性值。 實驗結果顯示Ni-Cr-Mo鋼經850℃ × 30min沃斯田鐵化油淬火後於液態氮深冷10min,再經150~175℃×1hr回火可得到高硬度並保有足夠韌性。回火於250℃~500℃左右會發生回火麻田散鐵脆性(TME),其原因為麻田散鐵板條界面的殘留沃斯田鐵變態析出雪明碳鐵所造成。 另外殘留沃斯田鐵的測定實驗,由於量很少,無法利用XRD分析之,於是利用磁性計測量之。經測量發現如果深冷天數延緩越久則殘留沃斯田鐵有穩定化的趨勢,以及合金中鎳含量提高則殘留沃斯田鐵量也會隨之增加。 | zh_TW |
dc.description.abstract | The purpose of the this work is to determine the best heat-treatment condition (including the austenitizing temperature, quenching rate, subzero treatment and tempering temperature ) the four wear-resistance steels (Fe-xNi-1.5%Cr-0.5%Mo,x equals 3、5 and 7% , and Fe-5Ni%-1.0%Cr-0.5%Mo). The correlation between microstructure and mechanical properties will be discussed by optical microscope (OM), transmission electron microscope (TEM) and scanning electron microscope (SEM).
The experiment finds that the toughness and hardness are seriously influenced by the distribution and morphology of the carbide precipitates in the tempered structure. The results show that the Ni-Cr-Mo steels can obtain high hardness and maintain good toughness by the way of oil-quenched from 850℃, subzero-treated in liquid nitrogen for 10 minutes and tempered at 150~175℃. On the contrary , tempered martensite embrittlement (TME) occurred at 250~500℃ because of retained austenite at the martensite lath boundary transformed to cementite. Finally we want to figure out the quantity of the retained austenite in this experiment but the content of retained austenite is too little to determine by X-ray diffractometer(XRD) . So that the retained austenite was analyzed by magnetometry. The results show that the retained austenite will be stabilized when the delay-time of subzero-treatment is increased. However the more the addition of nickel in the alloy,the more increase the amount of retained austenite. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T08:15:31Z (GMT). No. of bitstreams: 1 ntu-94-R92527033-1.pdf: 9686374 bytes, checksum: dc5f6c6dd607aeed09c462cc34e50dd2 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目 錄
第一章 前言..........................................1 第二章 文獻回顧......................................3 2-1 超高強度鋼簡介...................................3 2-1-1 前言............................................3 2-1-2 Ni-Cr-Mo鋼之回火處理...........................4 2-2 麻田散鐵相變化...................................6 2-2-1 麻田散鐵之特徵..................................6 2-2-2 麻田散鐵之晶體結構..............................8 2-2-3 麻田散鐵之型態學................................9 2-3 回火碳化物......................................12 2-4 合金元素之添加..................................13 2-5 回火麻田散鐵脆性(Tempered Martensite Embrittlement;TME).................................................15 2-6 回火徐冷脆性(Tempered Embrittlement;TE)........19 2-7 殘留沃斯田鐵(Retained Austenite: RA)............20 第三章 實驗方法.....................................28 3-1 分光分析儀成份測定..............................28 3-2 試片準備........................................28 3-3 熱處理..........................................29 3-4 機械性質測試....................................30 3-4-1 硬度測試.......................................30 3-4-2 衝擊試驗.......................................30 3-5 光學顯微鏡之觀察................................30 3-6 衝擊破斷面之觀察................................31 3-6-1 立體顯微鏡之觀察...............................31 3-6-2 掃瞄式電子顯微鏡(SEM)之觀察....................31 3-6-3 穿透式電子顯微鏡(TEM)之觀察....................31 3-7 磁性測量........................................31 第四章 實驗結果與討論...............................37 4-1 熱處理對機械性質的影響..........................37 4-1-1 沃斯田鐵化溫度對機械性質之影響.................37 4-1-2 冷卻速率對於機械性質之影響.....................37 4-1-3 深冷處理對機械性質之影響.......................38 4-1-4 回火溫度對於機械性質之影響.....................39 4-1-5不同Cr添加量對於機械性質之影響..................40 4-2 顯微組織之觀察..................................41 4-2-1 淬火溫度對顯微組織的影響.......................41 4-2-2 回火處理對顯微組織的影響.......................41 4-3 破斷面觀察......................................42 4-3-1 衝擊破斷面之立體顯微鏡組織.....................42 4-3-2 SEM破斷面觀察.................................43 4-4 TEM顯微組織之觀察...............................45 4-4-1不同回火速率之顯微組織觀察......................45 4-4-2不同回火條件之顯微組織觀察......................46 4-4-3不同Ni含量之顯微組織觀察........................50 4-5 空冷後馬上深冷、3天及6天後深冷的探討............51 4-5-1機械性質的影響..................................51 4-5-2顯微組織的影響..................................52 4-5-3破斷面觀察......................................52 4-5-4殘留沃斯田鐵量之影響............................52 4-6 不同鎳含量對殘留沃斯田鐵之影響...................53 4-7 磁性計殘留沃斯田鐵測量之討論.....................54 第五章 結論.........................................93 參考文獻.............................................95 | |
dc.language.iso | zh-TW | |
dc.title | 超高強度耐磨鋼板熱處理對機械性質的影響 | zh_TW |
dc.title | The Effect of Heat-Treatment on the Microstructures and Mechanical Properties of Ultrahigh-Strength Ni-Cr-Mo Steel. | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 徐永富 | |
dc.contributor.oralexamcommittee | 吳錫侃,陳煌? | |
dc.subject.keyword | 深冷處理,回火麻田散鐵脆性,殘留沃斯田鐵, | zh_TW |
dc.subject.keyword | Subzero treatment,tempered martensite embrittlement,retained austenite, | en |
dc.relation.page | 97 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 9.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。