請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36718完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝長富(Chang-Fu Hsieh) | |
| dc.contributor.author | Chuan-Ya Lin | en |
| dc.contributor.author | 林均雅 | zh_TW |
| dc.date.accessioned | 2021-06-13T08:12:35Z | - |
| dc.date.available | 2005-07-26 | |
| dc.date.copyright | 2005-07-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-20 | |
| dc.identifier.citation | Akkaya, M. S., A. Bhagwat, and P. B. Cregan. 1992. Length polymorphism of simple sequence repeat DNA in soybean. Genetics 132:1131-1139.
Asuka, Y., N. Tomaru, N. Nishimura, Y. Tsumura, and S. Yamamoto. 2004. Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers. Molecular Ecology 13:1241-1250. Baker, A. J. 2000. Molecular methods in ecology. Malden, MA, Blackwell Science. Berg, E. E., and J. L. Hamrick. 1995. Fine-scale genetic structure of a turkey oak forest. Evolution 49:110-120. Boshier, D. H., M. R. Chase, and K. S. Bawa. 1995. Population genetics of Cordia alliodora (Boraginaceae), a neotropical tree. 3. Gene flow, neighborhood, and population substructure. American Journal of Botany 82:484-490. Callen, D. F., T. A. D., Y. Shen, H. A. Phillips, R. I. Richards, J. C. Mulley, and G. R. Sutherland. 1993. Incidence and origin of 'null' alleles in the (AC)n microsatellite markers. American Journal of Human Genetics 52:922-927. Charlesworth, D., and B. Charlesworth. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology & Systematics 18:237-268. Chung, M. G., and S. S. Kang. 1996. Genetic variation within and among populations of Camellia japonica (Theaceae) in Korea. Canadian Journal of Forest Research 26:537-542. Chung, M. Y., B. K. Epperson, and M. G. Chung. 2003. Genetic structure of age classes in Camellia japonica(Theaceae). Evolution 57:62-73. Cockerham, C. C. 1969. Variance of gene frequencies. Evolution 23:72-84. Cruden, R. W. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32-46. Degen, B., R. Petit, and A. Kremer. 2001. SGS - Spatial Genetic Software: A computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. Journal of Heredity 92:447-448. Degen, B., H. Caron, E. Bandou, L. Maggia, M. H. Chevallier, A. Leveau, and A. Kremer. 2001. Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs. Heredity 87:497-507. Deichsel, G., and H. J. Trampisch. 1985. Cluster analyse und Diskriminanzanalyse. Gustav Fischer Verlag, Stuttgart. Dib, C., S. Fauré, C. Fizames, D. Samson, N. Drouot, A. Vignal, P. Millasseau et al. 1996. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380:152-154. Dietrich, W. F., J. Miller, R. Steen, M. A. Merchant, D. Damron-Boles, Z. Husain, R. Dredge et al. 1996. A comprehensive genetic map of the mouse genome. Nature 380:149-152. DiRienzo, A., A. C. Peterson, J. C. Garza, A. M. Valdes, M. Slatkin, and N. B. Freimer. 1994. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences USA. 91:3166-3170. Dunham, J., M. Peacock, C. R. Tracy, J. Nielsen, and G. Vinyard. 1999. Assessing extinction risk: integrating genetic information. Conservation Ecology 3:2. Epperson, B. K., and E. Alvarez-Buylla. 1997. Limited seed dispersal and genetic structure in life stages of Cecropia obtusifolia. Evolution 51:275-282. Falk, D. A., and K. E. Holsinger. 1991. Genetics and Conservation of Rare Plants. Oxford University Press, Oxford. Foucault, F., F. Praz, J. C., and M. Amor-Gueret. 1996. Experimental limits of PCR analysis of (CA)n repeat alterations. Trends in Genetics 12:450-452. Freeman, S., J. West, C. James, V. Lea, and S. Mayes. 2004. Isolation and characterization of highly polymorphic microsatellites in tea (Camellia sinensis). Molecular Ecology Notes 4:324-326. Geary, R. C. 1954. The contiguity ratio and statistical mapping. Incorp.Statist. 5:115-145. Gerber, S., P. Chabrier, and A. Kremer. 2003. FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. molecular Ecology 3:479-481. Gerber, S., S. Mariette, R. Streiff, C. Bodenes, and A. Kremer. 2000. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Molecular Ecology 9:1037-1048. Gilmour, D. S., G. H. Thomas, and S. C. R. Elgin. 1989. Drosophila nuclear proteins bind to regions of alternating C and T residues in gene promoters. Science 245:1487-1490. Hamrick, J. L., D. A. Murawski, and J. D. Nason. 1993. The influences of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107/108:281-297. Hardy, O. J. 2003. Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Molecular Ecology 12:1577-1588. Hardy, O. J., and X. Vekemans. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2:618-620. Huijser, P., W. Hennig, and R. Dijkhof. 1987. Poly(dC-dA/dG-dT) repeats in the Drosophila genome: a key function for dosage compensation and position effect? Chromosoma 95:209-215. Isagi, Y., T. Kenta, and T. Nakashizuka. 2002. Microsatellite loci for a tropical emergent tree, Dipterocarpus tempehes V. Sl. (Dipterocarpaceae). Molecular Ecology 2:12-13. Jelinski, D. E. 1997. On genes and geography: a landscapeperspective on genetic variation in natural populations. Landscape and Urban Planning 39:11-23. Kaliz, S., J. D. Nason, F. M. Hanzawa, and S. J. Tonsor. 2001. Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history and selection. Evolution 55:1560-1568. Kimura, M., and J. F. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49:725-738. Kimura, M., and T. Ohta. 1978. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Sciences USA. 75:2868-2872. Knowles, P. 1991. Spatial genetic structure within two natural stands of black spruce(Picea mariana(Mill.)B.S.P.). Silvae Genetica 40:13-19. Konuma, A., Y. Tsumura, C. T. Lee, and S. L. Lee. 2000. Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii(Dipterocarpaceae), inferred from paternity analysis. Molecular Ecology 9:1843-1852. Lagercrantz, U., H. Ellegren, and L. Andersson. 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research 21:1111-1115. Legendre, P., and M.-J. Fortin. 1989. Spatial patterns and ecological analysis. Vegetatio 80:107-138. Leonardi, S., and P. Menozzi. 1996. Spatial structure of genetic variability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity 77:359-368. Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:1943-1967. Lewontin, R. C. 1972. The apportionment of human diversity. Evolutionary Biology 6:381-398. Lynch, M., and B. G. Milligan. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology 3:91-99. Ma, A. Q., M. Roder, and M. E. Sorrells. 1996. Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39:123-130. Manabe, T., and S. Yamamoto. 1997. Spatial distribution of Eurya japonica in an old-growth evergreen broad-leaved forest. Journal of Vegetation Science 8:761-772. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27:209-220. Moran, P. a. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37:17-23. Morisita, M. 1959. Measuring of the dispersion of individuals and analysis of the distribuition patterns. Memoirs of the Faculty of Science Kyushu University 2:215-235. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA.70:3321-3323. O'Reilly, P., and J. M. Wright. 1995. The evolving technology DNA fingerprinting and its application to fisheries an aquaculture. Journal of Fish Biology 47(Supplement A):29-55. Oddou-Muratorio, S., R. J. Petit, B. L. Guerroue, D. Guesnet, and B. Demesure. 2001. Pollen- versus seed-mediated gene flow in a scattered forest tree species. Evolution 55:1123-1135. Oh, G. S., J. H. Kim, S. S. Kang, Y. Yeeh, and M. G. Chung. 1995. Spatial Genetic Structure among Korean Populations of Camellia japonica and Eurya japonica (Theaceae). Plant Species Biology 10:155-161. Pemberton, J. M., J. Slate, D. R. Bancroft, and J. A. Barrett. 1995. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Molecular Ecology 4:249-252. Perry, D. J., and P. Knowles. 1991. Spatial genetic structure within three sugar maple (Acer saccharum Marsh.) stands. Heredity 66:137-142. Porebski, S., L. G. bailey, and B. R. Baum. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15:8-15. Ripley, B. D. 1976. The second-order analysis of stationary processes. Journal of Applied Probability 13:255-266. —. 1977. Modelling spatial patterns. Journal of Royal Statistical Society, Series B 39:172-212. —. 1978. Spectral analysis and the analysis of pattern in plant communities. Journal of Ecology 66:965-981. Ritland, K., and C. Ritland. 1996. Inferences about quantitative inheritance based on natural population structure in the yellow monkeyflower, Mimulus guttatus. Evolution 50:1074-1082. Rousset, F. 2002. Inbreeding and relatedness coefficients: What do they measure? Heredity 88:371-380. Schaffner, W., G. Kunz, H. Daetwyler, J. Telford, H. O. Smith, and M. L. Birnstiel. 1978. Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing. Cell 14:655. Schemske, D. W., B. C. Husband, M. H. Ruckelshaus, C. Goodwillie, I. M. Parker, and J. G. Bishop. 1994. Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584-606. Sokal, R. R., and N. L. Oden. 1978. Spatial autocorrelation in biology. I.Methodology. Biological Journal of the Linnean Society 10:199-228. Stacy, E. A., J. L. Hamrick, and J. D. Nason. 1996. Pollen dispersal in low-density populations of three neotropical tree species. American Naturalist 148:275-298. Streiff, R., A. ducousso, C. Lexer, H. Steinkellner, J. Gloessl, and A. Kremer. 1999. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Molecular Ecology 8:831-841. Suen, T.-C., and M.-C. Hung. 1990. Multiple cis- and trans-acting elements involved in regulation of the neu gene. Molecular and Cellular Biology 10:6306-6315. Tanaka, K., Y. Tsumura, and T. Nakamura. 1999. Development and polymorphism of microsatellite markers for Fagus crenata and the closely related species, F. japonica. Theoretical and Applied Genetics 99:11-15. Tomaru, N., T. Mitsutsuji, M. Takahashi, Y. Tsumara, K. Uchida, and K. Ohba. 1997. Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. Heredity 78:241-251. Tomaru, N., M. Takahashi, Y. Tsumara, M. Takahashi, and K. Ohba. 1998. Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. American Journal of Botany 85:629-636. Turner, M. E., J. C. Stephens, and W. W. Anderson. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proceedings of the National Academy of Sciences USA. 79:203-207. Ueno, S., N. Tomaru, H. Yoshimaru, T. Manabe, and S. Yamamoto. 2000. Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Molecular Ecology 9:647-656. —. 2002. Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity 89:120-126. Ueno, S., H. Yoshimaru, N. Tomaru, and S. Yamamoto. 1999. Development and characterization of microsatellite markers in Camellia japonica. Molecular Ecology 8:335-346. Wachira, F., J. Tanaka, and Y. Takeda. 2001. Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. Journal of Horticultural Science & Biotechnology 76:557-563. Wright, S. 1931. Evolution in mendelian populations. Genetics 16:97-159. Wu, K.-S., and S. D. Tanksley. 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Molecular and General Genetics 241:225-235. Xie, C. Y., and P. Knowles. 1991. Spatial genetic substructure within natural populations of jack pine(Pinus banksiana). Canadian Journal of Botany 69:547-551. Yeeh, Y., S. S. Kang, and M. G. Chung. 1996. Evaluations of the natural monument populations of Camellia japonica (Theaceae) in Korea based on allozyme studies. Botanical Bulletin of Academia Sinica 37:141-146. Yeh, F. C., R.-C. Yang, and T. Boyle. 1999. POPGENE Version 1.31, http://www.ualberta.ca/~fyeh. Zheng, L., F. H. Collins, V. Kumar, and F. C. Kafatos. 1993. A Detailed Genetic Map for the X Chromosome of the Malaria Vector, Anopheles gambiae. Science 261:605-608. 吳姍樺. 1998. 南仁山亞熱帶雨林短期森林動態之研究. 國立台灣大學植物學研究所碩士論文. 呂勝由, 邱文良. 1998, 台灣稀有及瀕危植物之分級彩色圖鑑III., 行政院農業委員會. 沈明雅. 1991. 應用ISSR研究台灣原始觀音座蓮之遺傳變異. 國立中興大學植物學研究所碩士論文. 林奐宇. 1992. 台灣北部樂佩山區暖溫帶雨林森林組成結構及植物樹種空間分布型分析. 國立台灣大學植物學研究所碩士論文. 徐國士, 呂勝由. 1984, 台灣的稀有植物, 渡假出版社有限公司. 閔天祿. 2000, 世界山茶屬的研究. 昆明, 雲南科技出版社. 趙偉村. 1997. 南仁山亞熱帶雨林樹種分布類型之研究. 國立台灣大學植物學研究所碩士論文. 劉瓊蓮. 1993, 臺灣稀有植物圖鑑Ⅰ& II, 行政院農業委員會林務局. 鄭育斌. 1992. 南仁山亞熱帶雨林地被層植物之研究. 國立台灣大學植物學研究所碩士論文. 謝宗欣, 謝長富. 1990. 南仁山區亞熱帶雨林樹種組成和分佈類型. 台灣省立博物館年刊 33:121-146. 謝長富, 陳尊賢, 孫義方, 謝宗欣, 鄭育斌, 王國雄, 蘇夢淮. 1992, 墾丁國家公園亞熱帶雨林永久樣區之調查., 墾丁國家公園保育研究報告第85號. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36718 | - |
| dc.description.abstract | 恆春山茶(Camellia hengchunensis Chang)為台灣特有種,分布僅限於恆春半島南仁山附近山區之衝風坡面或稜線上。依據記載與觀察,山茶屬植物的傳粉媒介多以昆蟲(蜂類)為主,而種子由重力傳播。本研究目的在以微衛星分子標誌探討恆春山茶的交配系統(mating system)、種子與花粉傳播能力、族群之空間分布類型與遺傳歧異度、遺傳結構,並結合以上各點探討兩個假設:(1)小尺度下的遺傳結構顯著但不強;(2)小徑級的植株間遺傳結構較明顯,隨徑級增加,遺傳結構漸不明顯。對欖仁溪樣區141個樣本與南仁湖樣區12個樣本進行親子分析的結果,推測恆春山茶異交的比例相當高。種子在欖仁溪樣區內平均傳播距離為44.75公尺,最小值0.286公尺,最大值252.672公尺,但大多數案例在20公尺內。花粉在樣區內平均傳播距離為96.371公尺,最小值0公尺(自交),最大值265.798公尺。遺傳歧異度方面,Shannon’s information index值為0.2712,Nei’s gene diversity值為0.1587,欖仁溪樣區內兩山頭間之Gst值為0.0236,Nm值20.6892;欖仁溪樣區與南仁湖樣區之樣本間Gst值為0.0761,Nm值為6.0734。樣區內所有植株無論在任何空間尺度下均呈現聚集空間分布,而遺傳結構在空間距離40~60公尺以內較為顯著。將所有植株區分為三個徑級後,最小的徑級(小樹)與最大的徑級(老樹)在小空間尺度下皆呈現隨機空間分布,其遺傳結構亦大致落入隨機區間。成樹在任何空間尺度下均呈聚集空間分布,遺傳結構在空間距離30公尺以內顯著。以上結果意味著恆春山茶的種子主要是重力傳播,但可能有其他未知的傳播機制。其花粉傳播距離則可遠達一公里以上,使樣區之間的遺傳分化不明顯。所有植株在小尺度下遺傳結構顯著但不強,符合本研究的假設(1)。而此現象可能受自交比例低,基因交流受限,成株密度高且族群結構呈反J型的共同影響所致。但假設(2)在恆春山茶中並不成立,推測可能在成樹建立時期因為(a)老樹產生成樹這個世代時受某些因素影響,僅部分植株產生後代。(b)棲地異質性使某些家庭的子代存活率較高,使遺傳結構呈現出家庭成員的分布範圍。 | zh_TW |
| dc.description.abstract | Camellia hengchunensis Chang is an endemic species of Taiwan, which is distributed only on the windward slopes and ridges of Nanjenshan area in the southernmost Taiwan. According to previous research and observation, Camellia is pollinated by insect, often by bees, and the seeds are dispersed mainly by gravity. The object of this study is to use microsatellite markers to help us understand more about the mating system, seed and pollen dispersal, genetic diversity and spatial distribution pattern of C. hengchunensis, and to test two hypothesis about intra-population genetic structure of C. hengchunensis: (1) The genetic structure would be significant but weak at small scale; and (2) Genetic structure would decrease as the size class increases. The results of parentage analysis on 141 samples from Lanjenshi plot and 12 samples near Nanjenlake plot suggest that the outcrossing rate of C. hengchunensis is high. The average seed dispersal distance in Lanjenshi plot is 44.75 m, with a minimum value of 0.286 m and a maximum value of 252.672 m. The average pollen dispersal distance in Lanjenshi plot is 96.371m, with a minimum value of 0 m (when inbreeding) and a maximum value of 265.798 m. Values of Shannon’s information index and Nei’s gene diversity are 0.2712 and 0.1587 respectively in Lanjenshi plot. The Gst value of the two subpopulations in Lanjenshi plot is 0.0236, and the Nm value is 20.6892; the Gst value of Lanjenshi plot and Nanjenlake plot is 0.0761, and the Nm value is 6.0734. All samples in Lanjenshi plot form a clump spatial distribution at all scales, and the genetic structure is significant below 45~60 m. According to minimum DBH for onset of flowering, we divide all samples into three size classes: juveniles, adults and old trees. Both juveniles and old trees are randomly distributed at small scale and show a clump pattern at larger scales in Lanjenshi plot, and the genetic structure of them are not significant at all scales. Adults are aggregated at all scales, and the genetic structure of these individuals is significant below 30 m. The results presented above indicate that seeds of C. hengchunensis are mainly dispersed by gravity, but there might still be other dispersal mechanisms. The pollen dispersal distance can be over 1 km, which makes the genetic divergence between plots not significant. The first hypothesis about genetic structure is supported, which may result from low selfing rate, restricted gene flow, high density of adults and the inverse J-shape population structure. The second hypothesis about genetic structure is not supported, and the possible reasons might be: (1) For unknown reason, only part of “old trees” born “adults”; and (2) Only adults belong to some family survived during the establishing process, because of the heterogeneity of habitat. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T08:12:35Z (GMT). No. of bitstreams: 1 ntu-94-R92B44005-1.pdf: 1871208 bytes, checksum: 12b94d9f4d44ef2c97192d0d5b90b2fe (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 附表目次...................................................i
附圖目次..................................................ii 中文摘要.................................................iii 英文摘要..................................................iv 第一章 前言 (一) 引言................................................1 (二) 選用的分子標誌簡介..................................3 (三) 研究樣區概述........................................6 (四) 恆春山茶(Camellia hengchunensis Chang)簡介.........10 (五) 研究目的...........................................13 第二章 材料與方法 (一) 材料收集...........................................14 (二) 植物體總DNA抽取....................................16 (三) 確認可用的微衛星引子對.............................17 (四) 基因型取得與判讀(Genotyping).......................21 (五) 資料分析...........................................22 第三章 結果 (一) 親子分析推測恆春山茶交配系統、種子傳播距離與花粉傳播距離......................................................31 (二) 植株空間分布類型...................................37 (三) 遺傳歧異度.........................................39 (四) 遺傳結構...........................................40 第四章 討論 (一) 由遺傳資料推測恆春山茶的生活史特徵.................44 (二) 恆春山茶樣區內整體族群現況.........................45 (三) 可能發生在樣區內恆春山茶族群的歷史事件.............47 (四) Microsatellites的應用..............................48 第五章 結論..............................................51 第六章 參考文獻..........................................52 第七章 附錄 附錄一 親子分析-最可能雙親對...........................60 附錄二 Ripley’s K analysis計算得之L(d)值..............61 附錄三 Tanimoto distance值.............................62 附錄四 Coancestry coefficient值..........................63 附錄五 遺傳資料矩陣......................................64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 恆春山茶 | zh_TW |
| dc.subject | 南仁山 | zh_TW |
| dc.subject | 遺傳結構 | zh_TW |
| dc.subject | 微衛星 | zh_TW |
| dc.subject | microsatellite | en |
| dc.subject | Nanjenshan | en |
| dc.subject | genetic structure | en |
| dc.subject | Camellia hengchunensis | en |
| dc.title | 恆春山茶之族群內遺傳結構 | zh_TW |
| dc.title | Intra-population Genetic Structure of Camellia hengchunensis Chang | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄒稚華(Chih-Hua Tsou),胡哲明(Jer-Ming Hu) | |
| dc.subject.keyword | 恆春山茶,遺傳結構,南仁山,微衛星, | zh_TW |
| dc.subject.keyword | Camellia hengchunensis,genetic structure,Nanjenshan,microsatellite, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
