Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36567
Title: | Kolmogorov-Fisher 型態的反應擴散方程 Reaction-Diffusion Equations of the Kolmogorov-Fisher Type |
Authors: | Hui-Ying Chuang Wu 莊吳慧瑩 |
Advisor: | 陳俊全(Chiun-Chuan Chen) |
Keyword: | 反應擴散方程, Kolmogorov-Fisher Type, |
Publication Year : | 2005 |
Degree: | 碩士 |
Abstract: | 常係數反應擴散方程的波型解長久以來已被廣泛地研究。Kolmogorov-Fisher型態的方程式有兩種基本型式,其中一種是非線性項有唯一零解的,另一種是非線性項有較高階零解的。這篇論文是在討論方程式u_t=u_{xx}+f(u), x is in (-infty, infty)
的解,當f(u)={e^{-1/u}}*(1-u), f(1)=0, f'(1)< 0 所採用的方法是利用單調性取u,t作為自變數,p(u,t)=u_x(x,t)作為應變數,並對p方程運用下解及上解之概念。 Wavefront solutions of scalar reaction-diffusion equations have been intensively studied for many years. There are two basic cases for the Kolmogorov-Fisher type equations, typified by a nonlinear term with simple zero root and a nonlinear term with higher order zero root. The paper is concerned with solutions u(x,t) of the equation u_t=u_{xx}+f(u), x is in (-infty, infty) in the case f(u)={e^{-1/u}}*(1-u), f(1)=0, f'(1)< 0 The approach is to use the monotonicity to take u and t as independent variables and p(u,t)=u_x(x,t) as the dependent variable, and to apply ideas of sub- and super-solutions to the diffusion equation for p. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36567 |
Fulltext Rights: | 有償授權 |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-94-1.pdf Restricted Access | 355.54 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.