Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36567
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳俊全(Chiun-Chuan Chen)
dc.contributor.authorHui-Ying Chuang Wuen
dc.contributor.author莊吳慧瑩zh_TW
dc.date.accessioned2021-06-13T08:05:52Z-
dc.date.available2006-07-27
dc.date.copyright2005-07-27
dc.date.issued2005
dc.date.submitted2005-07-21
dc.identifier.citation[1]Alison L. Kay, Jonathan A. Sherratt and J. B.
Mcleod.Comparison theorems and variable speed waves for
a scalar reaction-diffusion equation.Proceedings of the
Royal Society of Edinburgh,131A, 1131-1161, 2001.
[2]P. C. Fife and J. B. Mcleod. The approach of solutions of
nonlinear diffusion equations to travelling front
solutions.Arch.Ration.Mech.Analysis 65(1977),335-361.
[3]P. C. Fife and J. B. Mcleod. A phase plane discussion of
convergence to travelling fronts for nonlinear
diffusion.Arch.Ration.Mech.Analysis 75(1981),281-314.
[4]D. J. Needham and A. N. Barnes. Reaction-diffusion and
phase waves occuring in a class of scalar reaction-
diffusion equations.Nonlinearity 12(1911),41-58.
[5]J. A. Sherratt and B. P. Marchant. Algebraic decay and
variable speeds in wavefront solutions of a scalar
reaction-diffusion equation.IMA J. Apple Math 56
(1996),289-302.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36567-
dc.description.abstract常係數反應擴散方程的波型解長久以來已被廣泛地研究。Kolmogorov-Fisher型態的方程式有兩種基本型式,其中一種是非線性項有唯一零解的,另一種是非線性項有較高階零解的。這篇論文是在討論方程式u_t=u_{xx}+f(u), x is in (-infty, infty)
的解,當f(u)={e^{-1/u}}*(1-u), f(1)=0, f'(1)< 0
所採用的方法是利用單調性取u,t作為自變數,p(u,t)=u_x(x,t)作為應變數,並對p方程運用下解及上解之概念。
zh_TW
dc.description.abstractWavefront solutions of scalar reaction-diffusion equations have been intensively studied for many years. There are two basic cases for the Kolmogorov-Fisher type equations, typified by a nonlinear term with simple zero root and a nonlinear term with higher order zero root. The paper is concerned with solutions u(x,t) of the equation
u_t=u_{xx}+f(u), x is in (-infty, infty)
in the case
f(u)={e^{-1/u}}*(1-u), f(1)=0, f'(1)< 0
The approach is to use the monotonicity to take u and t as
independent variables and p(u,t)=u_x(x,t) as the dependent
variable, and to apply ideas of sub- and super-solutions to the diffusion equation for p.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:05:52Z (GMT). No. of bitstreams: 1
ntu-94-R90221021-1.pdf: 364078 bytes, checksum: ae7b9d97752bedd768d839f328e696b9 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1. Introduction... 1~5
1.1. Background
1.2. The numerical results from four different kinds of
initial conditions
1.3. P-equation
1.4. Sub- and super-solutions
1.5. Comparison theorem for the p-equation
2. Exponentially decaying initial conditions...5~6
2.1. Sub-solution
2.2. Super-solution
2.3. Conclusion
3. Algebraically decaying initial conditions,alpha=1...6~14
3.1. Sub-solution for a> c_{crit}
3.2. Super-solution for a> c_{crit}
3.3. Conclusion
4. Algebraically decaying initial conditions,alpha>1...14~15
4.1. Sub-solution
4.2. Super-solution
4.3. Conclusion
5. Algebraically decaying initial conditions,alpha<1...15~17
5.1. Sub-solution
5.2. Super-solution
5.3. Initial conditions Phi not covered by the super-
solution overline{Psi}
5.4. Conclusion
6. Problem...18~21
6.1. Sub-solution
6.2. Super-solution
6.3. Conclusion
dc.language.isozh-TW
dc.subject反應擴散方程zh_TW
dc.subjectKolmogorov-Fisher Typeen
dc.titleKolmogorov-Fisher 型態的反應擴散方程zh_TW
dc.titleReaction-Diffusion Equations of the Kolmogorov-Fisher Typeen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林太家(Tai-Chia Lin),陳建隆(Jann-Long Chern)
dc.subject.keyword反應擴散方程,zh_TW
dc.subject.keywordKolmogorov-Fisher Type,en
dc.relation.page22
dc.rights.note有償授權
dc.date.accepted2005-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
355.54 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved