Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36077
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳煇(Ping-Hei Chen)
dc.contributor.authorRamesh Uppalaen
dc.contributor.author迦文西zh_TW
dc.date.accessioned2021-06-13T07:50:54Z-
dc.date.available2006-07-27
dc.date.copyright2005-07-27
dc.date.issued2004
dc.date.submitted2005-07-25
dc.identifier.citationReferences
Akachi, H., 1990, “Structure of a Heat Pipe”, No. 4,921,041, US Patent.
Akachi, H., 1992, “L-type Kenzan fin,” Technical report, Actronics, Tokyo.
Akachi, H., Polasek, F., and Stulc, P., 1996, “Pulsating Heat Pipes,” Proc. 5th Int. Heat Pipe Symposium, Melbourne, Australia, pp. 208-217.
Cotter, T.P., 1964, “Theory of Heat Pipes,” Los Alamos National Laboratory Report No. LA-3246-MS, University of California, Los Alamos, NM.
Casarosa, C., Latrofa, E., and Shelginski, A., 1983, “The geyser effect in a two-phase thermosyphons,” International Journal of Heat and mass Transfer, Vol.26, pp.933-941.
Charoensawan, P., Khandekar, S., Groll, M., and Terdtoon, P., 2003, “Closed loop pulsating heat pipes-Part A: Parametric experimental investigations,” Applied Thermal Engineering, Vol.23, pp.2009-2020.
Chieh, J.J., Lin, S.J., and Chen, S.L., 2004, “Thermal performance of cold storage in thermal battery for air conditioning,” International Journal of Refrigeration, Vol.27, pp.120-128.
Dobson, R.T., 2004, “Theoretical and Experimental modeling of an open oscillatory heat pipe including Gravity,” International Journal of Thermal Sciences, Vol.43, pp.114-119.
Gay, F. W., 1929, “Heat Transfer Means,” No.1,725,906, U.S. Patent. Gaugler, R. S., 1944, “Heat Transfer Devices,” No.2,350,348, U.S. Patent.
Groll, M., and Rosler, S., 1992, “Operation principles and performance of heat pipes and closed two phase thermosyphons,” J. Non-Equl. Therm, Vol. 17, pp. 91-151.
Groll, M., and Khandekar, S., 2002, “Pulsating Heat Pipes: A challenge and still unsolved problem in heat pipe science,” Proc. 3rd Int. Conf. on Transport Phenomena in Multiphase Systems, pp. 35-44.
Hosoda, M., Nishio, S., and Shirakashi, R., 1999, “Study of meandering closed-loop heat-transport device (vapor-plug propagation phenomena),” JSME Int. J. B, Vol. 4, pp. 737-744.
Khandekar, S., Schneider,M., Schafer, P., Kulenovic, R., and Groll, M., 2000, “Visualization of Thermo-fluid dynamic Phenomena in flat plate closed loop pulsating heat pipe, ” Proc. 6th Int. Heat pipe Symposium, Chiang Mai, Thailand, pp.123-130.
Khandekar, S., Schneider, M., and Groll, M., 2002, “Mathematical modeling of pulsating heat pipes: State of the art and future challenges,” Proc. 5th ASME/ISHMT Int. Heat and Mast Transfer Conference, Kolkata, India, pp. 856-862.
Khandekar, S., Groll, M., Charoensawan, P., and Terdtoon, P., 2002, “Pulsating Heat Pipes: Thermo-fluidic characteristics and comparative study with single phase thermosyphon,” 12th Int. Heat Transfer Conference, Grenoble, France, Vol. 4, pp.459-464.
Khandekar, S., Schneider, M., Pschafer, P., Kulenovic, R., and Groll, M., 2002, “Thermofluiddynamic study of flat plate closed loop pulsating heat pipes,” Microscale Thermophysical Engineering, Vol. 6, pp.303-318.
Khandeker, S., Dollinger, N., and Groll, M., 2003, “Understanding operational regimes of closed loop pulsating heat pipes: an experimental study,” Applied Thermal Engineering, Vol.23, pp.707-719.
Khandekar, S., Charoensawan, P., Groll, P., and Terdtoon, M., 2003, “Closed loop pulsating heat pipes part B: Visualization and semi-empirical modeling,” Applied Thermal Engineering, Vol. 23, pp. 2021-2033.
Lin, T.F., Lin, W.T., Tsay, Y.L., Wu, J.C., and Shyu, R.J., 1995, “Experimental investigation of geyser boiling in an annular two-phase closed thermosyphon,” International Journal of Heat and Mass transfer, Vol.38, pp.295-307.
Negishi, K., 1984, “Thermo-fluid dynamics of two-phase thermosyphons,” 5th Int. Heat Pipe Conference, pp.2-9.
Nishio, S., 2000 “Attempts to apply micro heat transfer to thermal management,” Int. Conf. on Heat Transfer and Transport Phenomena in Microscale, Banff, pp.32-40.
Peterson, G.P., 1994, Heat pipes, Wiley-Interscience, New York.
Qu, W., and Ma, T., 2003, “Experimental investigation on flow and heat transfer of pulsating heat pipes,” Proc. 12th Int. Heat Pipe Conference, Moscow-Kostroma-Moscow, pp.226-231.
Rittidech, S., Terdtoon, P., Murakami, M., Kamonpet, P., and Jompakdee, W., 2003, “Correlation to predict heat transfer characteristics of a closed-end oscillating heat pipe at normal operating condition, ” Applied Thermal Engineering, Vol.23, pp. 497-510.
Scheneider, M., Khandekar, S., Shafer, P., Kulenovic, R., and Groll, M., 2000,“Visualization of thermo-fluid dynamic phenomena in flat plate closed looped pulsating heat pipe,” 6th Int. Heat Pipe Symposium, Chiang Mai, Thailand, pp. 320-328.
Shafii, M., Faghri, A., and Zhang, Y., 2001, “Thermal modeling of unlooped and looped pulsating heat pipes,” J. Heat Transfer, ASME, Vol.123, pp. 1159-1172.
Sakulchangsatjatai, P., Terdtoon, P., Wongratanaphisan, T., Kamonpet, P., and Murakami, M., 2004, “Operation modeling of Closed-End and Closed Loop Oscillating heat pipes at normal operation condition,” Applied Thermal Engineering, Vol. 24, pp.995-1008.
Tantolin, C., 1994, “Cooling of high dissipated electronic components by immersion within dielectric fluid: Study of heat transfer exchanges by boiling/condensation/convection,” Ph.D. Thesis, INSA de Lyon, France, pp. 287.
Tantolin, C., Godet, C., and Zaghdoudi, M.C., 2000, “Heat pipe thermal behavior from frozen start-up,” PCIM, Nuremberg, pp.355-360.
Tang,B.Y., Wong, T.N., and Ooi, K.T., 2001 “Closed-loop pulsating heat pipe,” Applied Thermal Engineering,Vol.21, pp-1845-1862.
Tong, B.Y., Wong, T.N., and Ooi, K.T., 2001, “Closed-Loop pulsating heat pipe,” Applied Thermal Engineering, Vol.21, pp.1845-1862.
Van, P. Carey, 1992, “Liquid-Vapor phase change phenomena,” Hemisphere Publishing Corporation, pp.76-83.
Xu, J.L, Li, Y.X., and Wong, T.N., 2005, “High speed flow visualization of a closed loop pulsating heat pipe,” International Journal of Heat and Mass Transfer,Vol.48, pp.3338-3351.
Zhang, Y., and Faghri, A., 2002, “Heat transfer in a pulsating heat pipe with an open end,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 755-764.
Zhang, X.M., Xu, J.L., and Zhou, Z.Q., 2004, “Experimental study of a pulsating heat pipe using FC-72, ethanol and water as working fluids, ” Experimental Heat Transfer, Vol.17, pp. 47-67.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36077-
dc.description.abstractThis study aims to flow visualization and thermal analysis of a closed loop pulsating heat pipe based on inclination angle, charging ratio, type of fluid and heat flux for thermal control of micro electronic equipments. Although a variety of designs are in use, understanding of the fundamental processes and parameters affecting the PHP operation are still vague. A vertical, closed loop, glass PHP with water, methanol and 2-propanol as working fluids is first experimentally investigated for a range of heat inputs, inclination angles and charging ratios. Experimental studies are performed on a PHP, consisting of a heating section, an adiabatic section and a condensation section incorporating heat sink. The capillary tube used in this study has an inside diameter of 2mm and a wall thickness of 3mm.Total length of the pulsating heat pipe is 350cm. The experiments are conducted under forced convection cooling at the condenser section, with heating powers from 10 to 110W, with different heating modes (locations) and charging ratios from 30% to 80%. The experimental results show that the system presented better performance when operating at vertical orientation. Optimal charging ratio is 50% for DI water, 40% for methanol and 40% for 2-propanol. Regarding working fluid the PHP shows better performance when Methanol is used in vertical orientation with the lowest evaporator section temperatures.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:50:54Z (GMT). No. of bitstreams: 1
ntu-93-R92522122-1.pdf: 938055 bytes, checksum: c4543f46bbdff1af753fbc50ee5131a6 (MD5)
Previous issue date: 2004
en
dc.description.tableofcontentsTable of Contents
Acknowledgement I
Abstract II
Table of Contents IV
List of Tables VI
List of Figures VII
Chapter 1:
Introduction 1
1.1 General remarks 1
1.2 History of heat pipe 2
1.3 Drawbacks in heat pipe 5
1.4 Motivation of pulsating heat pipe 6
1.5 Present study 8
1.6 Thesis organization 9
Chapter 2:
Working Principle 10
Chapter 3:
Experimental Setup 12
3.1 General discussion 12
3.2 Experimental apparatus 12
3.3 Experimental procedure 14
Chapter 4:
Results and Analysis 16
4.1 Effect of charging ratio on thermal performance of PHP 16
4.2 Effect of thermal conductance on thermal performance of PHP 18
4.3 Effect of evaporator temperature on thermal performance of PHP 19
4.4 Effect of obliquity on thermal performance of PHP 20
4.5 Effect of heating mode on thermal performance of PHP 21
4.6 Operational possibilities of PHP 22
4.7 Possibilities of geyser boiling in PHP 22
Chapter 5:
Conclusions and Future Prospects 26
References 58




List of Tables
Index 28
Table 4.1 29
Vertical orientation
Table 4.2 29
Horizontal orientation
Table 4.3 30
450 degrees orientation
Table 4.4 31
The ranges of heat load to the evaporator for occurrence of the geyser boiling in a
water-filled PHP with lh=5cm
Table 4.5 31
The ranges of heat load to the evaporator for occurrence of the geyser boiling in a
water-filled thermosyphon with lh=14cm



List of Figures
Figure 3.1 32
Prototype of present experimental study
Figure 3.2 33
Experimental setup for closed loop pulsating heat pipe
Figure 3.3 34 -35
(a) Data acquisition system, (b) AC power supply, and (c) DC power supply
Figure 4.1 36
Effect of water charging ratio on thermal resistance of PHP
Figure 4.2 37
Effect of methanol charging ratio on thermal resistance of PHP
Figure 4.3 38
Effect of 2-propanol charging ratio on thermal resistance of PHP
Figure 4.4 39
Effect of water charging ratio on thermal resistance of PHP
Figure 4.5 40
Effect of methanol charging ratio on thermal resistance of PHP
Figure 4.6 41
Effect of 2-propanol charging ratio on thermal resistance of PHP
Figure 4.7 42
Thermal conductance for DI water charging ratio in vertical orientation
Figure 4.8 43
Thermal conductance for Methanol charging ratio in vertical orientation
Figure 4.9 44
Thermal conductance for 2-propanol charging ratio in vertical orientation
Figure 4.10 45
Effect of heat input on evaporator temperature for DI water charging ratio in vertical orientation
Figure 4.11 46
Effect of heat input on evaporator temperature for Methanol charging ratio in vertical orientation
Figure 4.12 47
Effect of heat input on evaporator temperature for 2-propanol charging ratio in vertical orientation
Figure 4.13 48
Evaporator temperature comparison between three working fluids in vertical orientation
Figure 4.14 49
Thermal performance vs. inclination angle for DI water with 60% charging ratio
Figure 4.15 50
Effect of heating mode in vertical orientation for 50% charging ratio
Figure 4.16 51
Effect of heating mode in 450 orientations for 50% charging ratio
Figure 4.17 52
Temperature versus Time under VBH for 10W of heat input
Figure 4.18 52
Temperature versus Time under VBH for 10W of heat input
Figure 4.19 53
Temperature versus Time under VBH for 20W of heat input
Figure 4.20 53
Temperature versus Time under VBH for 20W of heat input
Figure 4.21 54
Temperature versus Time under VBH for 40W of heat input
Figure 4.22 54
Temperature versus Time under VBH for 40W of heat input
Figure 4.23 55
Temperature versus Time under VBH for 50W of heat input
Figure 4.24 55
Temperature versus Time under VBH for 50W of heat input
Figure 4.25 56
Temperature versus Time under VBH for 110W of heat input
Figure 4.26 56
Temperature versus Time under VBH for 110W of heat input
Figure 4.26 57
Schematic diagram of the test section from [Lin, 1995]
dc.language.isoen
dc.subject流場分析zh_TW
dc.subject脈衝熱管zh_TW
dc.subject兩相流zh_TW
dc.subject電子散熱zh_TW
dc.subjectFlow patternen
dc.subjectElectronic coolingen
dc.subjectTwo-phase loopen
dc.subjectPulsating heat pipeen
dc.titleThermal Analysis of Closed Loop Pulsating Heat Pipeen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳希立(Sih-Li Chen),李達生(Da-Sheng Lee)
dc.subject.keyword脈衝熱管,兩相流,電子散熱,流場分析,zh_TW
dc.subject.keywordPulsating heat pipe,Two-phase loop,Electronic cooling,Flow pattern,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-93-1.pdf
  未授權公開取用
916.07 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved