Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35361
標題: 以期望值最大化於仲介式口碑系統之信任學習
EM Learning of Trust in A Broker-based Reputation System
作者: Chia-en Tai
戴佳恩
指導教授: 許永真
關鍵字: 信任,口碑,仲介,學習,期望值最大化,
Trust,Reputation,broker,learning,EM,Expectation-Maximization,
出版年 : 2005
學位: 碩士
摘要: A reputation system predicts a user’s reputation in a way similar to the word-ofmouth
in the real world. Each user sends feedbacks to the system, and the system learns a
trust model predicting each user's reputation. The prediction builds up trust relationship
between each pair of users and it can reduce a user's losses in a transaction.
Our system learns user trust by using Expectation-Maximization algorithm (EM
algorithm). EM algorithm can learn the unobservable trust of a user from observable
feedbacks sent by users, with the probabilistic model describing the relationship between
the known and unknown. The model assumes the existence of a buyer's rating bias which
is reflected in a buyer's feedbacks in order to better predict a user's reputation, especially
when there are few feedbacks available.
Our reputation system predicts both user's reputation and rating bias in a broker-based
architecture. EM learning is done inside each broker who only receives feedbacks
from its own group of users. Inter-broker communication can reduce the errors brought
by the seperation of user feedbacks, while the broker-based architecture keeps the system
scalable and avoids drawbacks of a centralized system. EigenTrust is resilience to various
attacks in a P2P environment, and we use it to manage our inter-broker communication
where the inter-broker relation is in a P2P fashion.
We implement a simulator to verify our model, and the experiment result shows
that our system can predict better than the simple averaging method. Our system is also
less sensitive to the change of feedback types and the increase of users. Therefore, our
model can accurately learn a user’s trust in a broker-based system.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35361
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
430.41 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved