Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35361
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許永真
dc.contributor.authorChia-en Taien
dc.contributor.author戴佳恩zh_TW
dc.date.accessioned2021-06-13T06:49:36Z-
dc.date.available2005-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citationBrin, S., and Page, L. 1998. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems 30(1–7):107–117.
Chirita, P.; Nejdl, W.; Schlosser, M. T.; and Scurtu, O. 2004. Personalized reputation
management in p2p networks. In ISWC Workshop on Trust, Security, and Reputation on
the Semantic Web.
Clausen, A. 2004. The cost of attack of pagerank. In IAWTIC’2004: Proceeding of the
International Conference on Agents, Web Technologies and Internet Commerce.
Dellarocas, C. 2000. Mechanisms for coping with unfair ratings and discriminatory
behavior in online reputation reporting systems. In ICIS ’00: Proceedings of the twenty
first international conference on Information systems, 520–525. Atlanta, GA, USA:
Association for Information Systems.
Jeh, G., and Widom, J. 2002. Scaling personalized web search. Technical report,
Stanford University.
Jurca, R., and Faltings, B. 2003. An incentive compatible reputation mechanism. In
Proceedings of the Second International Joint Conference on Autonomous Agents and
Multiagent Systems, 1026–1027. ACM Press.
Kamvar, S. D.; Schlosser, M. T.; and Garcia-Molina, H. 2003. The eigentrust algorithm
for reputation management in P2P networks. In Proceedings of the Twelfth International
World Wide Web Conference.
Lin, K.; Lu, H.; Yu, T.; and Tai, C. 2005. A reputation and trust management broker
framework for web applications. In EEE05: Proceedings of the IEEE International
Conference on e-Technology, e-Commerce, and e-Service. IEEE Computer Society.
80 REFERENCES
Marsh, S. 1994. Formalising Trust as a Computational Concept. Ph.D. Dissertation,
University of Stirling.
Mitchell, T. 1997. Machine Learning. McGraw Hill. chapter 6, 191–196.
Mui, L.; Mohtashemi, M.; and Halberstadt, A. 2002. Notions of reputation in multiagents
systems: a review. In AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, 280–287. New York, NY,
USA: ACM Press.
Pavlov, E.; Rosenschein, J. S.; and Topol, Z. 2004. Supporting privacy in decentralized
additive reputation systems. In The Second International Conference on Trust Management.
Pujol, J. M.; Sanguesa, R.; and Delgado, J. 2002. Extracting reputation in multi agent
systems by means of social network topology. In AAMAS ’02: Proceedings of the first
international joint conference on Autonomous agents and multiagent systems, 467–474.
New York, NY, USA: ACM Press.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and Riedl, J. 1994. GroupLens:
An open architecture for collaborative filtering of netnews. In Proceedings of the ACM
1994 Conference on Computer Supported Cooperative Work, 175–186. New York, NY:
ACM Press.
Sabater, J., and Sierra, C. 2001. Regret: A reputation model for gregarious societies. In
Fourth Workshop on Deception Fraud and Trust in Agent Societies, 61–70.
Wang, Y., and Vassileva, J. 2003. Bayesian network trust model in peer-to-peer networks.
In AAMAS ’03: Proceedingsof the Second International Workshop on Agents
and Peer-to-Peer Computing at the Autonomous Agents and Multi Agent Systems 2003
Conference, 23–34.
REFERENCES 81
Whitby, A.; Josang, A.; and Indulska, J. 2004. Filtering out unfair ratings in bayesian
reputation systems. In Proceedings of the 7th Int Workshop on Trust in Agent Societies.
Yamamoto, A.; Asahara, D.; Itao, T.; Tanaka, S.; and Suda, T. 2004. Distributed pagerank:
A distributed reputation model for open peer-to-peer network. In SAINTWorkshops,
389–394.
Yu, B., and Singh, M. P. 2002. An evidential model of distributed reputation management.
In Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems, 294–301. ACM Press.
Zacharia, G., and Maes, P. 2000. Trust management through reputation mechanisms.
Applied Artificial Intelligence Journal 14(9):881–908.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35361-
dc.description.abstractA reputation system predicts a user’s reputation in a way similar to the word-ofmouth
in the real world. Each user sends feedbacks to the system, and the system learns a
trust model predicting each user's reputation. The prediction builds up trust relationship
between each pair of users and it can reduce a user's losses in a transaction.
Our system learns user trust by using Expectation-Maximization algorithm (EM
algorithm). EM algorithm can learn the unobservable trust of a user from observable
feedbacks sent by users, with the probabilistic model describing the relationship between
the known and unknown. The model assumes the existence of a buyer's rating bias which
is reflected in a buyer's feedbacks in order to better predict a user's reputation, especially
when there are few feedbacks available.
Our reputation system predicts both user's reputation and rating bias in a broker-based
architecture. EM learning is done inside each broker who only receives feedbacks
from its own group of users. Inter-broker communication can reduce the errors brought
by the seperation of user feedbacks, while the broker-based architecture keeps the system
scalable and avoids drawbacks of a centralized system. EigenTrust is resilience to various
attacks in a P2P environment, and we use it to manage our inter-broker communication
where the inter-broker relation is in a P2P fashion.
We implement a simulator to verify our model, and the experiment result shows
that our system can predict better than the simple averaging method. Our system is also
less sensitive to the change of feedback types and the increase of users. Therefore, our
model can accurately learn a user’s trust in a broker-based system.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:49:36Z (GMT). No. of bitstreams: 1
ntu-94-R92922109-1.pdf: 440741 bytes, checksum: 67cc6e189a1e3e81b018cf2619ed6e8f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract i
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Broker-based Trust Management . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 RelatedWork 7
2.1 Centralized Trust Management . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Recommender System . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Reputation System . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Distributed Trust Management . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 P2P Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Referral Network . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Broker System . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
iii
2.3 Dealing User Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Web of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Learning Trust from Feedback Records . . . . . . . . . . . . . . 12
2.4 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 3 System Architecture 15
3.1 Broker-based Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Inter-broker communication . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Personalized Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 4 Probabilistic Trust Model 21
4.1 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Bayesian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 EM Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 EM Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 Log Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.2 E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.3 M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Derived Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Chapter 5 Inter-broker Communication 31
5.1 EigenTrust Reputation Model . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Usage of EigenTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 Broker Feedbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Usage of Broker Trust . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 6 Simulator 37
6.1 Simulator Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
iv
6.1.1 Sellers and Buyers . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 Brokers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 EigenTrust Manager . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Simulation Process for Single-Broker System . . . . . . . . . . . . . . . 46
6.2.1 Transaction Generation . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.2 Output Timing Set . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.3 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.4 Feedbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.5 Error Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Simulation Process for Multi-Broker System . . . . . . . . . . . . . . . . 50
6.3.1 Transactions and Feedbacks . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.3 Error Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Chapter 7 Experiment 53
7.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 EM Learning Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Feedback Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.5 EM Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6 Numbers of Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.7 Multi-Broker Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Chapter 8 Conclusion 77
8.1 Summary of Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
dc.language.isoen
dc.subject期望值最大化zh_TW
dc.subject信任zh_TW
dc.subject口碑zh_TW
dc.subject仲介zh_TW
dc.subject學習zh_TW
dc.subjectExpectation-Maximizationen
dc.subjectEMen
dc.subjectTrusten
dc.subjectReputationen
dc.subjectbrokeren
dc.subjectlearningen
dc.title以期望值最大化於仲介式口碑系統之信任學習zh_TW
dc.titleEM Learning of Trust in A Broker-based Reputation Systemen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林桂傑,項潔,林智仁
dc.subject.keyword信任,口碑,仲介,學習,期望值最大化,zh_TW
dc.subject.keywordTrust,Reputation,broker,learning,EM,Expectation-Maximization,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
430.41 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved