請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣丙煌(Been-Huang Chiang) | |
| dc.contributor.author | Po-Hsien Li | en |
| dc.contributor.author | 李柏憲 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:43:01Z | - |
| dc.date.available | 2021-07-25 | |
| dc.date.copyright | 2011-08-04 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-25 | |
| dc.identifier.citation | Aungst, B. J., Rogers, N. J., Shwfter. (1986). Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. International Journal of Pharmaceutical, 3: 225-234.
Apenten R. K. O., Zhu, Q. H. (1996). Interfacial parameters for selected Spans and Tweens at the hydrocarbon-water interface. Food Hydrocolloids, 10(1): 27-30. Akimoto, J., Takayama, K., Isowa, K., Nagai, T. (1996). Evaluation of skin irritation of percutanceous absorption promoters by means of fractual dimension of rat skin structure. International Journal of Pharmaceutics, 128, 251-260. Abismaïl, B., Canselier, J. P., Wilhelm, A. M., Delmas, H., & Gourdon, C. (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrasonics Sonochemistry, 6, 75-83. Alvarez-Figueroa, M. J., & Blanco-Méndez, J. (2001). Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. International Journal of Pharmaceutics, 215, 57-65. Aboofazeli, R., Zia, H., Needham, T.E. (2002). Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement. Drug Delivery, 9: 239-247. Allen, L. V., Popovich, N. G., Ansel, H. C. (2005). Pharmaceutical dosage forms and drug delivery system. Lippincott Williams & Wilkins, 8th ed. Atmane, M., Muriel, J., Joël, S., Stéphane, D. (2006). Flavour encapsulation and controlled release- a review. International Journal of Food Science and Technology, 41, 1-21. Aqil, M., Ahad, A., Sultana, Y., Ali, A. (2007). Status of terpenes as skin penetration enhancers. Drug Discovery Today, 12(23/24), 1061-1067. Boyd, J., Parkinson, C., Sherman, P. (1972). Factors affecting emulsion stability and the HLB concept. Journal of Colloid and Interface Science, 41(2), 359-370. Barry B. W. (2001). Novel mechanisms and devices to enable successful transdermal drug delivery. European Journal of Pharmaceutical Sciences, 14, 101-114. Bouchemal, K., Briançon S., Perrier, E., Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. International Journal of Pharmaceutics, 280, 241-251. Cevc, G., Blume, G., Schätzlein, A. (1995). Transdermal drug carriers: basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. Journal of Controlled Release, 36, 3-16. Chanamai, R., Coupland, J. N., McClements, D. J. (1998). Effect of temperature on the ultrasonic properties of oil-in-water emulsions. Colloids and Surfaces, 139, 241-250. Chanamai, R., McClement, D. J. (2000). Dependence of creaming and rheology of monodisperse oil in water emulsions on droplet size and concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172, 79-86. Capek, I. (2004). Degradation of kinetically-stable o/w emulsions. Advances in Colloid and Interface Science, 107, 125-155. Chepurnov, A. A., Bakulina, L. F., Dadaeva, A. A., Ustinova, E. N., Chepurnova, T. S., Baker, J.R. (2003). Inactivation of Ebola virus with a surfacetant nanoemulsion. Acta Tropica, 87, 315-320. Caldeira-Araújo, S., Alves-Mattos, A. C., Teixeira, H. F., Coelho, P. M. Z., Nelson, D. L., Cristina-Oliveira, M. (2007). Improvement of in vitro efficacy of a novel schistosomocidal drug by incorporation into nanoemulsions. International Journal of Pharmaceutics, 337, 307-351. Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloid, 17, 25-39. El Maghraby, G. M., Williams, A. C., Barry, B. W. (1999). Skin delivery of oestradiol from deformaable and traditional liposomes: mechanistic studies. Journal of Pharmaceutical Pharmacology, 51, 1123-1134. El-Maghraby, G. M., Barry, B. W., Williams, A. C. (2008). Liposomes and skin: from drug delivery to model membranes. European Journal of Pharmaceutical Science, 34, 203-222. Floury, J., Desrumaux, A., Lardieres, J. (2000). Effect of high-pressure homogenization on droplet size distribution and rheological properties of model oil-in-water emuilsion. International Journal of Food Science and Technology, 1, 127-134. Fernandez, P., André, V., Rieger, J., Kühnle, A. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251, 53-58. Femenía-Fonta, A., Balaguer-Fernández, C., Merino, V., Rodilla, V., Lópaz-Castellano. (2005). Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate. European Journal of Pharmaceuticals and Biopharmaceuticals, 61, 50-55. Farahmand, S., Maibach, H. I. (2009). Transdermal drug pharmacokinetic in man: interindividual variability and partial prediction. International Journal of Pharmaceutics, 367, 1-15. Frelichowska, J., Bolzinger, M. A., Pelletier, J., Valour, J. P., Chevalier, Y. (2009). Topical delivery of lipophilic drugs from o/w pickering emulsions. International Journal of Pharmaceutics, 371, 56-63. Fu, Z., Liu, M., Xu, J., Wang, Q., Fan, Z. (2010). Stabilization of water-in-octane nano-emulsion. Part I: stabilized by mixed surfactant systems. Fuel, 89, 2838-2843. Griffin, W. C. (1954). Calculation of HLB values of non-ionic surfactants. Journal of the Society of Cosmetic Chemists, 5, 259-261. Gacular, M. C., Kubala, J. (1975). Statistical models for shelf life failures. Journal of Food Science, 40, 404-409. Gerhäuser, C., Klimo K., Heiss, E., Neumann, I., Gamal-Eldeen, A., Knauft, J., Liu, G. Y., Sitthimonchai, S., Frank, N. (2003). Mechanism-based in vitro screening of potential cancer chemopreventive agents. Fundamental and Molecular Mechanisms of Mutagenesis, 523-524, 163-172. Godin, B., & Touitou, E. (2007). Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Advanced Drug Delivery Reviews, 59, 1152-1161. Gutiérrez, J. M., González, C., Maestro, A., Solè, I., Pey, C. M., Nolla, J. (2008). Nano-emulsions: new applications and optimization of their preparation. Current Opinion in Colloid and Interface Science, 13(4), 245-251. Hofland, H. E. J., Bouwstra, J. A., Bodde, H. E., Spies, F., Junginger, H. E. (1995). Interaction between liposomes and human stratum corneum in vitro: freeze fracture electron microscopical visualization and small angle X-ray scattering studies. British Journal of Dermatology, 132, 853-866. Ho, C. C., & Ahmadk, K. (1999). Electrokinetic behavior of palm oil emulsions in dilute electolyte solutions. Journal of Colloid and Interface Science, 216, 25-33. Hsu, J. P., & Nacu, A. (2003). Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant. Journal of Colloid and Interface Science, 259, 374-381. Hamouda, T., Myc, A., Donovan, B., Shih, A. Y., Reuter, J. D., Baker, J. R. (2001). A novel surfacetant nanoemulsion with a unique non-irritant topical antimicrobial activeity against bacteria, enveloped viruses and fungi. Microbiological Research, 156, 1-7. Henry, J. V. L., Fryer, P. T., Frith, W. J., Norton, L. T. (2009). Emulsification mechanisms and storage instability of hydrocarbon-in-water sub-micro emulsion stabilized with Tweens (20 and 80), Brij96 and sucrose monoesters. Journal of Colloid and Interface Science, 338, 201-206. Hoeller, S., Sperger, A., Valenta, C. (2009). Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. International Journal of Pharmaceutics, 370, 181-186. Huang, Q., Yu, H., Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science, 75, R50-R57. Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, J. C., Feng, J., Garcia-Celma, J., Azemar, N., Solans, C. (2004). Phase behavior and nano-emulsion formation by the phase inverse temperature method. Langmuir, 20, 6594-6598. Izquierdo, P., Feng, J., Esquena, J., Tadros, T. F., Dederen, J. C., Garcia, M. J., Azemar, N., Solans, C. (2005). The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. Journal of Colloid and Interface Science, 285, 388-394. Imai, Y., Ujiie, N., Nakamura, A., Koshinuma, M., Tajima, K. (2006). Three-phase structure of hexadecane nanoemulsion formed with phospholipid-surfactant mixtures and its novel phase transition temperature TE. Colloids and Surfaces A, 276, 134-142. Jiao, J., Burgess, D. J. (2003). Ostwald ripening of water-in-hydrocarbon emulsion. Journal of Colloid and Interface Science, 264(2), 509-516. Juang, R. S., Lin, K. H. (2004). Ultrasound-assisted production of W/O emulsions in liquid surfactant membrane processes. Colloids and surfaces A, 238, 43-49. Jafari, S. M., He, Y., Bhandari, B. (2007). Optimization of nano-emulsions production by microfluidization. European Food Research Technology, 225, 733-741. Jafari, S. M., He, Y., Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82, 478-488. Junyaprasert, V. B., Teeranachaideekul, V., Souto, E. B., Boonme, P., Müller, R. H. (2009). Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation. International Journal of Pharmaceutics, 377(1-2), 207-214. Koyama, Y., Bando, H., Yamashita, F., Takakura, Y., Sezaki, H., Hashida, M., (1994). Comparative analysis of percutaneous absorption enhancement by d-limonene and oleic acid based on a skin diffusion model. Pharmaceutical Research, 11(3), 377-383. Karbstein, H., Schubert, H. (1995). Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chemical Engineering and Processing, 34, 205-211. Kanikkannan, N., Singh, J., Ramarao, P. (1999). Transdermal iontophoretic delivery of bovine insulin and monomeric human insulin analogue. Journal of Controlled Release, 59, 99-105. Krishnaiah, Y. S. R., Satyanarayana, V., Bhaskar, P. (2002). Influence of limonene on the bioavailability of nicardipine hydrochloride from membrane-moderated transdermal therapeutic systems in human volunteers. International Journal of Pharmaceutical, 247, 91-102. Kannikkannan, K., Kanimalls, K., Lamba, S. S. (2003). Structure activity relationship of chemical penetration enhancers in transdermal drug activity. Current Medicine Chemistry, 7, 603-608. Kogan, A., Garti, N. (2006). Microemulsions as transdermal drug delivery vehicles. Advances in Colloid and Interface Science, 123-126, 369-385. Kaushik, V., Roos, Y. H. (2007). Limonene encapsulation in freeze-drying of gum Arabic-sucrose-gelatin systems. Swiss Society of Food Science and Technology, 40, 1381-1391. Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R., Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies, 9, 170-175. Kotyla, T., Kuo, F., Moolchandani, V., Wilson, T., Nicolosi, R. (2008). Increased bioavailability of a transdermal application of a nano-sized emulsion preparation. International Journal of Pharmaceutics, 347, 144-148. Khoee, S., Yaghoobian, M. (2009). An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing Penicillin-G in double emulsion. European Journal of Medicinal Chemistry, 44, 2392-2399. Lobo, L., Svereika, A. (2003). Coalescence during emulsification 2. Role of small molecule surfactants. Journal of Colloid and Interface Science, 261, 498-507. Liu, W., Sun, D., Li, C., Liu, Q., Xu, J. (2006). Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science, 303, 557-563. Lv, F. F., Li, N., Zheng, L. Q., Tung, C. H. (2006). Studies on the stability of the chloramphenicol in the microemulsion free of alcohols. European Journal of Pharmaceutics and Biopharmaceutics, 62, 288-294. Lobo, L., Svereika, A. (2003). Coalescence during emulsification 2. Role of small molecule surfactants. Journal of Colloid and Interface Science, 261, 498-507. Lee, J., Lee, Y., Kim, J., Yoon, M., Choi, Y. M., (2005). Formulation of microemulsion systems for transdermal delivery of aceclofenac. Archives of Pharmacal Research, 28(9), 1097-1102. Lijuan, W., Xuefeng, Li., Gaoyong, Z., Jinfeng, D., Julian, E. (2007). Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 314, 230-235. Lee, J. N., Jee, S. H., Chan, C. C., Lo, W., Dong, C. Y., Lin, S. J. (2008). The effects of depilatory agents as penetration enhancers on human stratum corneum structures. The Society for Investigative Dermatology, 128, 2240-2247. Lin, C. C., Lin, H. Y., Chen, H. C., Yu, M. W., Lee, M. H., (2009). Stability and characterization of phospholipid-based curcumin-encapsulated microemulsions. Food Chemistry, 116, 923-928. Liu, C. H., Chang, F. Y., Hung, D. K., (2011). Terpene microemulsions for transdermal curcumin delivery: effecs of terpenes and cosurfactants. Colloids and Surfaces B: Biointerfaces, 82, 63-70. Marinova, K. K., Alargova, R. G., Penkov, N. D., Velev, O. D., Petesv, D. W., Inanov, I. B., Borwankar, R. P. (1996). Changing of oil-water interface due to spontaneous adsorption of hydroxyl ions. Langmuir, 12, 2045-2051. McClements, D. J. (1999). Emulsion stability. Food emulsions, p. 185-232. CRC Press, Boca Raton, London, New York. Mongenot, N., Charrier, S., Chalier, P. (2000). Effect of ultra sound emulsification on cheese aroma encapsulation by carbohydrates. Journal of Agriculture and Fod Chemistry, 48, 861-867. Morales, D., Gutierrez, J. M., Garcia-Celma, M. J., Solans, Y. C. (2003). A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir, 19, 7196-7200. Meynier, A., Lecoq, C., Genot, C. (2005). Emulsification enhances the retention of esters and aldehydes to a great extent than changes in the droplet size distribution of the emulsion. Food Chemistry, 96(1), 153-159. Madene, A., Jacquot, M., Scher, J., Desobry, S. (2006). Flavour encapsulation and controlled release – a review. International Journal of Food Science and Technology, 41, 1-21. Mirhosseini, H., Salmah, Y., Nazimah, S. A. H., Tan, C. P. (2007). Solid-phase microextraction for headspace analysis of key volatile compounds in orange beverage emulsion. Food Chemistry, 105, 1659-1670. Maghraby, G. M. E., Barry, B. W., Williams, A. C. (2008). Liposomes and skin: from drug delivery to model membranes. European Journal of Pharmaceutical Sciences, 34, 203-222. Mou, D., Chen, H., Du, D., Mao, C., Wan, J., Xu, H., Yang, X. (2008). Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. International Journal of Pharmaceutics, 353, 270-276. Napper, D. H. (1977). Steric stabilization. Journal of Colloid and Interfacial Science, 58, 390-422. Nokhodchi, A., Shokri, J., Dashbolaghi, A., Hassan-Zadeh, D., Ghafourian, T., Barzegar-Jalali, M. (2003). The enhancement effect of surfactants on the penetration of lorazepam through rat skin. International Journal of Pharmaceutics, 250, 359-369. Nokhodchi, A., Sharabiani, K., Rashidi, M. R., Ghafourian, T. (2007). The effect of terpene concentrations on the skin penetration of diclofenac sodium. International Journal of Pharmaceutics, 335, 97-105. Okabe, H., Suzuki, E., Saitoch, T. (1994). Development of novel transdermal system containing d-limonene and ethanol as absorption enhancers. Journal of Control Release, 32, 243-247. Porras, M., Solans, C., González, C., Martínez, A., Guinart, A., Gutiérrez, J. M. (2004). Studies of formation of W/O nano-emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 249, 115-118. Pey, C. M., Maestro, A., Solé, I., González, C., Solans, C., Gutiérrez J. M. (2006). Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids and Surfaces A, 288, 144-150. Primo, F. L., Michieleto, L., Rodrigues, M. A. M., Macaroff, P. P., Morais, P. C., Lacava, Z. G. M., Bentley, M. V. L. B., Tedesco, A. C. (2007). Magnetic nanoemulsions as drug delivery system for Foscan® : skin permeation and retention in vitro assays for topical application in photodynamic therapy (PDT) of skin cancer. Journal of Magnetism and Magnetic Materials, 311, 354-357. Ranade, V. V., Hollinger, M. A. (1996). Transdermal drug delivery in: drug delivery system, CRC Press, Inc., New York, p.177-208. Rhee, Y. S., Choi, J. G., Park, E. S., Chi, S. C., (2001). Transdermal delivery of ketoprofen using microemulsions. International Journal of Pharmaceutics, 228, 161-170. Rizwan, M., Aqil, M., Ahad, A., Sultana, Y., Ali, M. M. (2008). Transdermal delivery of valsartan: I. effect of various terpenes. Drug Development and Industrial Pharmacy, 34, 618-626. Schick, M. (1967). Nonionic surfactants. Surfactant Science Series V. I, Marcel Dekker, Inc., New York. Sheu, T. Y., & Rosenberg, M. (1995). Microencapsulation by spray-drying ethyl caprylate in whey protein and carbohydrate wall systems. Journal of Food Science, 60(1), 98-103. Smith, E. W., Maibach, H. I. (1995). Percutaneous penetration enhancers, CRC Press, Inc. p.1-19. Stachurski, J., & Michalek, M. (1996). The effect of the ζ potential on the stability of a non-polar oil-in-water emulsion. Journal of Colloid and Interface Science, 184, 433-436. Santos-Magalhães, N. S., Pontes, A., Pereira, V. M. W., Caetano, M. N. P. (2000). Colloidal carriers for benzathine penicillin G: Nanoemulsions and nanocapsules. International Journal of Pharmaceutical, 208, 71-80. Shokri, J., Nokhodchi, A., Dashbolaghi, A. (2001). The effect of surfactants on the skin penetration of diazepam. International Journal of Pharmaceutical, 228, 99-107. Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara M., Linko P. (2003). Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. Journal of Food Science, 68, 2256-2262. Sonneville-Aubrun, O., Simonnet, J. T., L’Alloret, F. (2004). Nanoemulsions: a new vehicle for skincare products. Advances in Colloid and Interface Science, 108-109, 145-149. Soottitantawat, A., Yoshii, H., Furuta, T., Ohgawara, M., Forssell, P., Partanen, R., Poutanen, K., Linko, P. (2004). Effect of water activity on the release characteristics and oxidative stability of D-limonene encapsulated by spray drying, Journal of Agricultural and Food Chemistry, 52, 1269-1276. Shim, J., Kang, H. S., Park, W. S., Han, S. H., Kim, J., Chang, I. S. (2004). Transdermal delivery of mixnoxidil with block copolymer nanoparticles. Journal of Controlled Release, 97, 477-484. Sarker, D. K. (2005). Engineering of nanoemulsions for drug delivery. Current Drug Delivery, 2, 297-310. Sadurn´I, N., Solans, C., Azemar, N. (2005). Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. European Journal of Pharmaceutical Science, 26, 438-445. Soottitantawat, A., Bigeard, F., Yoshii, H., Furuta, T., Ohkawara, M., Linko. (2005). Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Science & Emerging Technologies, 6, 107-114. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., Garcia-Celma, M. J. (2005) Nano-emulsions. Current Opinion in Colloid and Interface Science, 10, 102-110. Sajjadi, S., (2006). Effect of mixing protocol on formation of fine emulsion. Chemical Engineering Science, 61, 3009-3017. Sapra, B., Jain, S., Tiwary, A. K. (2008). Percutaneous permeation enhancement by terpenes: mechanistic view. American Association of Pharmaceutical Scientists, 10(1), 120-132. Sonavane, G., Tomoda, K., Sano, A., Ohshima, H., Terada, H., Makino, K., (2008). In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids and surfaces B: Biointerfaces, 65, 1-10. Sakulku, U., Nuchuchua, O., Uawongyart, N., Puttipipatkhachorn, S., Soottitantawat, A., Ruktanonchai, U. (2009). Characterization and mosquito repellent activity of citronella oil nanoemulsion. International Journal of Pharmaceutics, 372, 105-111. Sonavane, G., Tomoda, K., Sano, A., Ohshima, H., Terada, H., Makino, K. (2008). In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids and Surfaces B: Biointerfaces, 65, 1-10. Sakeena, M. H. F., Elrashid, S. M., Muthanna, F. A., Ghassan, Z. A., Kanakal, M. M., Lia, L., Munavvar, A. S., Azmin, M. N., (2010). Effect if limonene on permeation enhancement of ketoprofen in palm oil esters nanoemulsion. Journal of Oleo Science, 59(7), 395-400. Takamura, A., Minowa, T., Noro, S., Kubo, T. (1979). Effect of Tween and Span group emulsifiers on the stability of o/w emulsions. Chemical and Pharmaceutical bulletin, 27(12), 2921-2925. Taylor, P. (1995). Ostwald ripening in emulsions. Coiioids and Surfaces A, 99, 175-185. Taylor, P. (1998). Ostwald ripening in emulsions. Advances in Colloid and Interface Science, 75, 107-163. Taylor, P. (2003). Ostwald ripening in emulsions: estimation of solution thermodynamics of the disperse phase. Advances in Colloid and Interface Science, 106, 261-285. Tadros, T., Izquierdo, P., Esquena, J., Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science,108-109, 303-318. Taha, E. I., Al-Saidan, S., Samy, A. M., Khan, M. A. (2004). Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate. International Journal of Pharmaceutics, 285, 109-119. Toro-Arreola, S. D., Flores-Torales, E., Torres-Lozano, C., Toro-Arreola, A., D., Tostado-Pelayo, K., Ramirez-Dueñas, M., G., Daneri-Navarro, A. (2005). Effect of D-limonene on immune response in BALB/c mice with lymphoma. International Immunopharmacology, 5, 829-838. Tan, C. P., Nakajima, M. (2005). Β-carotene nanodispersions: preparation, characterization and stability evaluation. Food Chemistry, 92, 661-671. Urbina-Villalba, G., Garcia-Sucre, M. (2001). Influence of surfactant distributionon the stability of oil /water emulsions towards flocculation and coalescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 190, 111-116. Us´on, N., Garcia, M. J., Solans, C. (2004). Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250, 415-421. Vyas, T. K., Shahiwala, A., Amiji, M. M. (2008). Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. International Journal of Pharmaceutics, 347, 93-101. Walters, K. A., Walker, M., Olejnik, O. (1987). Non-ionic surfactant effects on hairless mouse skin permeability characteristics. Journal of Pharmacy and Pharmacology, 40, 525-529. Williams, A. C., Barry, B. W. (1991). Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharmaceutical Research, 8(1): 17-24. Williams, A. C., Barry, B. W. (1994). Terpenes and the lipidprotein partitioning theory of skin penetration enhancement. Pharmaceutical Research, 8, 17-24. Whorton, C., Reineccius, G. A. (1995). Evaluation of the mechanisms associated with the release of encapsulated flavor materials from maltodextrin matrices. Encapsulation and Controlled Release of Food Ingredients. ACS Symp. Ser. No. 590, 143-160. Wu, H., Ramachandran, C., Weiner, N. D., Roessler, B. J. (2001). Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. International Journal of Pharmaceutical, 220, 63-75. Wissing, S. A., Müller, R. H. (2002). Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. Journal of Controlled Release, 81, 225-233. Youenang Piemi, M. P., Korner, D., Benita, S., Marty, J. P. (1999). Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. Journal of Controlled Release, 58, 177-187. Yoshii, H., Soottitantawat, A., Liu, X. D., Atarashi, T., Furuta, T., Aishima, S., Ohgawara, M., Linko, P. (2001). Flavor release from spray-dried maltodextrin/gum arabic or soy matrices as a function of storage relative humidity, Innovative Food Science & Emerging Technologies, 2, 55-61. Yuan, Y., Li, S. M., Mo, F. K., Zhong, D. F. (2006). Investigation of microemulsion system for transdermal delivery of meloxicam. International Journal of Pharmaceutics, 321, 117-123. Wang, X. Y., Jiang, Y., Wang, Y. W., Huang, M. T., Ho, C. T., Huang, Q. R. (2008). Enhancing antiinflammation activity of curcumin through O/W nanoemulsions. Food Chemistry, 108(2), 419-424. Yuan, Y., Gao, Y., Mao, L., Zhao, J. (2008). Optimization of condition for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chemistry, 107, 1300-1306. Yuan, Y., Gao, Y., Zhan, J., Mao, L. (2008). Characterization and stability evaluation of β-carotene nanoemulsions preprared by high pressure homogenization under various emulsifying conditions. Food Research International, 41, 61-68. Zakzewski, C. A., Wasilewski, P., Cawley, P., Ford, W. (1998). Transdermal delivery of regular insulin to chronic diabetic rats: effect of skin preparation and electrical enhancement. Journal of Controlled Release, 50, 267-272. Zhao, K., Singh, J. (1998). Mechanisms of percutaneous absorption of tamoxifen by terpenes: eugenol, d-limonene and menthon. Journal of Controlled release, 55, 253-260. Zheng, W. W., Zhao, L., Wei, Y. M., Ye, Y., Xiao, S. H. (2010). Preparation and in Vitro evaluation of nanoemulsion system for the transdermak delivery of granisetron hydrochloride. Chemical & Pharmaceutical Bulletin, 58, 1015-1019. Zhou, H., Yue, Y., Liu, G., Li, Y., Zhang, J., Gong, Q., Yan, Z., Duan, M. (2010). Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Research Letter, 5, 224-230. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35173 | - |
| dc.description.abstract | 本研究為利用混合界面活性劑Span 85和 Brij 97配合超音波乳化技術來製備d-limonene奈米級乳化液,試驗設計以反應曲面模式來探討製程之最適化條件,結果顯示So ratio為0.6-0.7、應用功率18 W,在乳化時間120秒時可以得到粒徑小於100 nm之奈米級乳化液。乳化液起始pH值為6.4時,此時表面電位為-20 mV,在pH值4.0時電位接近0 mV; 而在pH值12.0值電位接近-30 mV。由TEM觀察顯示,奈米級乳化液中液滴顆粒呈現圓球狀,中心陰影部份為d-limonene包覆在乳化系統中。奈米級乳化液最主要的不安定現象為奧斯瓦老化,老化速率在25oC (0.39 m3s-1x1029)時會較4oC (1.44 m3s-1x1029)來的低,此結果與LSW理論符合。儘管奧斯瓦老化是影響奈米級乳化液安定性最主要的因子,但是貯藏試驗果顯示,經過八週的d-limonene奈米級乳化液仍然安定。法蘭茲擴散器可以用來評估d-limonene奈米級乳化液通透老鼠腹部皮膚之效果,越小之液滴通透效率越好,最高的通透速率為液滴粒徑大小為54 nm。在6小時的皮膚通透試驗顯示,d-limonene在皮膚中的濃度可達40.11 µg/cm2,由組織切片的照片可以觀察到,皮膚並無明顯之孔洞與間隙,顯示d-limonene奈米級乳化液當作藥物經皮吸收傳遞系統的安全性。此外,奈米級乳化液有促進薑黃素經皮膚吸收效果,載體液滴粒徑越小,穿透效果越好。 | zh_TW |
| dc.description.abstract | D-limonene in water nanoemulsion was prepared by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether. Investigation using response surface methodology revealed that 10% d-limonene nanoemulsions formed at So ratio (d-limonene concentration to mixed surfactant concentration) 0.6-0.7 and applied power 18 W for 120 s had droplet size below 100 nm. The zeta potential of the nanoemulsion was approximately -20 mV at original pH 6.4, closed to zero around pH 4.0, and around -30 mV at pH 12.0. TEM examination showed that the droplets are spherical and the gray parts of the droplets are d-limonene precipitation incorporated in spherical droplets of the emulsion system. The main destabilization mechanism of the systems is Ostwald ripening. The ripening rate at 25oC (0.39 m3s-1x1029) was lower than that at 4oC (1.44 m3s-1x1029), which was in agreement with the LSW theory. Despite of Ostwald ripening, the droplet size of d-limonene nanoemulsion remained stable after 8 weeks of storage. Franz diffusion cells were used to evaluate the permeation of d-limonene nanoemulsion through the rat abdominal skin, and the permeation rate was found to be size dependent. The maximum permeation rate was achieved by the emulsion with the lowest droplet size (54 nm). The concentration of d-limonene in the skin reached 40.11 µg/cm2 after 6 h. The histopathological photograph showed that there was no obvious void and empty space in the epidermal region, indicating that the D-limonene nanoemulsion is a safe carrier for transdermal drug delivery. Furthermore, d-limonene nanoemulsions can enhance the transdermal delivery of curcumin, and the smaller the droplet size of the carrier, the higher the permeation rate through rat skin. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:43:01Z (GMT). No. of bitstreams: 1 ntu-100-D95641003-1.pdf: 2566485 bytes, checksum: 9d523da4fffbbc51ddff92a5092afc5e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 謝辭……………………………………………………………………………………...II
目錄……………………………………………………………………………...……..III 圖目錄.………………………………………………………………………………….V 表目錄..………………………………………………………………………………..VII 中文摘要…………………………………………………………………..................VIII Abstract…....…………………………………………………………………………...IX 第一章 緒論…………………………………………………………………………..10 第二章 文獻整理……………………………………………………...........................14 1.奈米級乳化液 (Nanoemulsions)….............................................................................14 1.1 定義與特性………………...……………………………………………………...14 1.2 奈米級乳化液形成機制.……………………...………………..…………………17 1.3 奈米級乳化液熱力學安定性……………………………………………………..17 1.4 乳化安定性………...................................................................................................20 1.5 界面活性劑...............................................................................................................22 1.6 奈米級乳化液之相關研究.......................................................................................27 2.皮膚傳遞系統(Transdermal Delivery System, TDDS)………………...........……....31 2.1 定義與特性...............................................................................................................31 2.2 皮膚結構……………..……………...………………………………………….....32 2.3 經皮膚吸收之評估………………………..……...…………………………….....32 2.4 影響藥物經皮膚吸收之因子…………...………………………………………...34 2.5 皮膚傳遞路徑………………………………...…………………………................35 2.6 皮膚穿透促進載體………………………...……………………………………....36 第三章 材料與方法………………………………………………….……………......42 3.1 材料.………………………………………………………………………………...42 3.2 製備方法……………………………………………………………………………42 3.3 製程最適化…………………………………………………………………………45 3.4 奈米級乳化液特性與安定性………………………………………………………45 3.5 奈米級乳化液經皮吸收試驗………………………………………………………49 3.6 奈米級乳化液促進薑黃素經皮膚吸收效果………………………………………52 3.7 統計分析……………………………………………………………………………53 第四章 結果與討論……………………………………………………………….......56 4.1 混合界面活性劑之探討……………………………………………………………56 4.2 d-limonene 奈米級乳化液形成最適化條件探討………...………………………..68 4.3 奈米級乳化液特性…………………………………………………………………76 4.4 奈米級乳化液安定性………………………………………………………………89 4.5 奈米級乳化液之皮膚吸收試驗……………………………………………………94 4.6 奈米級乳化液促進薑黃素經皮膚吸收效果之研究……………………………..102 第五章 結論…...………..............................................................................................109 第六章 參考文獻………………………………………..……………………...........109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米級乳化液 | zh_TW |
| dc.subject | 經皮吸收系統 | zh_TW |
| dc.subject | 奧斯瓦老化 | zh_TW |
| dc.subject | 超音波乳化技術 | zh_TW |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | d-limonene | zh_TW |
| dc.subject | 反應曲面模式 | zh_TW |
| dc.subject | Curcumin | en |
| dc.subject | Nanoemulsions | en |
| dc.subject | Ultrasonic emulsification | en |
| dc.subject | d-limonene | en |
| dc.subject | Response surface methodology | en |
| dc.subject | Ostwald ripening | en |
| dc.subject | Transdermal delivery system | en |
| dc.title | 奈米級d-limonene/水乳化液之製備及其皮膚穿透效果 | zh_TW |
| dc.title | D-limonene-in-water nanoemulsions preparation and its skin permeation performance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 葉安義(An-I Yeh),黃義侑(Yi-You Huang),柯文慶(Wen-Ching Ko),王俊權(Chiun-Chuang Roger Wang) | |
| dc.subject.keyword | 奈米級乳化液,超音波乳化技術,d-limonene,反應曲面模式,奧斯瓦老化,經皮吸收系統,薑黃素, | zh_TW |
| dc.subject.keyword | Nanoemulsions,Ultrasonic emulsification,d-limonene,Response surface methodology,Ostwald ripening,Transdermal delivery system,Curcumin, | en |
| dc.relation.page | 124 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
