請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳鈞(Chun Chen) | |
| dc.contributor.author | Wei-Chih Chung | en |
| dc.contributor.author | 鍾偉志 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:37:43Z | - |
| dc.date.available | 2012-07-28 | |
| dc.date.copyright | 2011-07-28 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-25 | |
| dc.identifier.citation | 1.E. E. Lewis, “Fundamentals of Nuclear Reactor Physics,” Academic Press, 2008.
2.馬進、王兵樹、馬永光,“ 核能發電原理 ”,中國電力出版社,2007。 3.G. T. Miller, “Living in the Environment: Principles, Connections, and Solutions 13th ed.,” Brooks Cole, 2003. 4.連培生,“ 原子能工業 ”,原子能出版社北京圖書發行部,2002。 5.U. S. NRC: Students’ Corner, “Nuclear Reactors”, <http://www.nrc.gov/ reading-rm/basic-ref/students/reactors.html> (retrieved 2010/2/1) 6.S. Glasstone and A. Sesonske, “Nuclear Reactor Engineering: Reactor Design Basics, 4th ed.,” Springer, 1994. 7.郭榮卿,“核電廠材料劣化與對策研究:現況與規劃”,2006台灣原子能論壇,2006。 8.Hu-Chul Lee, “Development of Nuclear Pressure Vessel Materials,” 17th Summer Seminar on Fusion Reactor Technology, Seoul, Korea, Jul. 30 - Aug. 1, 2001. 9.A. Dhooge, R. E. Dolby, J. Sebille, R. Steinmetz and A. G. Vinckier, “A Review of Work Related to Reheat Cracking in Nuclear Reactor Pressure Vessel Steels,” International Journal of Pressure Vessel & Piping, 6 (1978), pp.329-409. 10.R. M. Horn, G. M. Gordon, F. P. Ford and R. L. Cowan, “Experience and Assessment of Stress Corrosion Cracking in L-grade Stainless Steel BWR Internals,” Nuclear Engineering & Design, 74 (1997), pp.313-325. 11.R. L. Klueh, J. F. King and J. L. Griffith, “Simple Test for Dissimilar-metal Welds,” Welding Journal, 62 (1983), pp.154s-159s. 12.C. D. Lundin, “Dissimilar Metal Welds – Transition Joints Literature Review,” Welding Journal, 61 (1982), pp.58s-63s. 13.J. T. Tucker and F. E. Berle, “Development of Ferritic-austenitic Weld Joint for Steam Plant Application,” Welding Journal, 35 (1956), pp.529s-540s. 14.K. H. Holko, “The Importance of Welding Factors in Dissimilar Weld Failures,” Proceedings of Conference on Joining Dissimilar Metals, Pittsburgh, Pennsylvania, AWS and EPRI, Aug. 1982. 15.J. F. Lancaster, “Metallurgy of Welding, 3rd ed.,” George Allen & Unwin Ltd., 1980. 16.J. C. Lippold and D. J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steel,” John Wiley & Sons, Inc., 2005. 17.S. D. Kiser, et al., “Nickel Alloy Welding Requirements for Nuclear Service,” in Focus on Nuclear Power Generation, 2005. 18.R.A. Page, “Stress Corrosion Cracking of Alloys 600 and 690 and Nos. 82 and 182 Weld Metals in High temperature water,” Corrosion, 39 (1982), pp.409-421. 19.J. M. Kikel and D. M. Parker, “Ductility-Dip Cracking Susceptibility of Filler Metal 52 and Alloy 690,” ASM Proceedings of the International Conference: Trends in Welding Research, Jun. 1-5, 1998, Pine Mountain, Georgia. 20.G. A. Young, “The Mechanism and Modeling of Intergranular Stress Corrosion Cracking of Nickel-Chromium-Iron Alloys Exposed to High Purity Water,” 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Aug. 14-18, 2005, Salt Lake City, Utah. 21.G. A. Young, T. E. Capobianco and R. Etien, “Development of a Highly Weldable and Corrosion Resistant Ni-Cr Filler Metal,” 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Aug. 19-23, 2007, Whistler, BC, Canada. 22.S.D. Kiser, R. Zhang and B.A. Baker, “A New Welding Material for Improved Resistance to Ductility Dip Cracking,” ASM Proceedings of the 8th International Conference: Trends in Welding Research, p 639-644, 2009. 23.J. C. Lippold, “Recent Advances in Welding Metallurgy,” Proceedings of Taiwan International Welding Conference ’98 on Technology Advancements and New Industrial Applications in Welding, Taipei, Taiwan, Sep. 7-9, 1998. 24.V. Kujanpaa, N. Suutala, T. Takalo and T. Moisio, “Correlation between Solidification Cracking and Microstructure in Austenitic and Austenitic- ferritic Stainless Steel Welds,” Welding Research International, 9 (1979), pp.55-76. 25.H.P. Seifert and S. Ritter, “Stress Corrosion Cracking of Low-alloy Reactor Pressure Vessel Steels under Boiling Water Reactor conditions,” Journal of Nuclear Materials, 372 (2008), pp.114-131. 26.N. Taylor, C. Faidy and P. Gilles: Assessment of Dissimilar Weld Integrity: Final Report of the NESC-III, EUR 22510 EN, 2006. 27.A. J. Jacobs, “Grain-boundary Segregation and IGSCC in Cold-worked Type 304 SS,” Corrosion, 46 (1990), pp.30-37. 28.H. Choi, F. H. Beck, Z. Szklarska-Smialowska, and D. D. Macdonald, “Stress Corrosion Cracking of ASTM A508 Cl 2 Steel in Oxygenated Water at Elevated Temperatures,” Corrosion, 38 (1982), pp.136-144. 29.A. R. McIlree, EPRI Interim Report, TP-1001491-NP, Part.1 (Non-proprietary Information), April, 2001. 30.J. F. Eckel, “Diffusion across Dissimilar Metal Joints” Welding Journal, 43 (1964), pp.170s-178s. 31.C. D. Lundin, “Dissimilar Metal Welds - Transition Joints Literature Review,” Welding Journal, 61 (1982), pp.58s-63s. 32.H. P. Seifert, S. Ritter, T. Shoji, Q. J. Peng, Y. Takeda and Z. P. Lu, “Environmentally-assisted Cracking Behaviour in the Transition region of an Alloy 182/SA 508 Cl.2 Dissimilar Metal Weld Joint in Simulated Boiling Water Reactor Normal Water Chemistry Environment,” Journal of Nuclear Materials, 378 (2008), pp.197-210. 33.D. I. Roberts, R. H. Ryder and R. Viswanathan, “Performance of Dissimilar Welds in Service,” Journal of Pressure Vessel Technology, 107 (1985), pp.247-254. 34.F. Vaillant, J. Boursier, L. Legras, B. Yrieix, E. Lemaire, J. Champredonde and C. Amzallag, “A Review of Weldability and SCC Behaviours of Ni-base Weld Metals in Laboratory PWR Environment,” Proceeding of 13th International Conference on Environmental Degradation of Materials in Nuclear Power System – water reactors, Whistler, British Columbia, August 19-23, 2007. 35.Sindo Kou, “Welding Metallurgy 2nd ed.,” John Wiley & Sons, Inc., 2003. 36.R.D. Stout, “Weldability of Steels”, 4th ed.”, WRC, 1987. 37.“Challenges and Solutions in Repair Welding for Power and Process Plants – Proceeding of a Workshop,” WRC Bulletin 412 (1996), pp.1-125. 38.W. J. Sperko, “Exploring Temper Bead Welding,” Welding Journal, 84 (2005), pp.37-40. 39.T. Lant, D. L. Robinson, B. Spafford and J. Storesund, “Review of Weld Repair Procedures for Low Alloy Steels Designed to Minimise the Risk of Future Cracking,” International Journal of Pressure Vessels and Piping, 78 (2001), pp.813-818. 40.A. S. Aloraier, R. N. Ibrahim and J. Ghojel, “Eliminating Post-weld Heat Treatment in Repair Welding by Temper Bead Technique: Role Bead Sequence in Metallurgical Changes,” Journal of Materials Processing Technology, 153-154 (2004), pp.392-400. 41.C. D. Lundin, “A New Approach to the Study of Hot Cracking in Fusion Welds,” Ph.D Dissertation, Rensselaer Polytechnic Institute, 1966. 42.W. F. Savage, C. D. Lundin, “Application of the Varestraint Test to Study of Weldability,” Welding Journal, 45 (1966), 497s-503s. 43.A. C. Lingenfelter, “Varestraint Testing of Nickel Alloys,” Welding Journal, 52 (1972), 430s-436s. 44.仙田富男, 松田福久, 高野元太, “Trans-Varestraint試驗法ズプペ溶接法ソ凝固割ホ感受性ソ研究 (2),” 溶接學會誌, 第42卷 (1973), 48-56. 45.J. C. Lippold, J. W. Sowards, G. M. Murray, B. T. Alexandrov and A. J. Ramirez, “Weld Solidification Cracking in Solid-Solution Strengthened Ni-Base Filler Metals,” in Hot Cracking Phenomena in Welds II, Springer Berlin Heidelberg, 2008, pp.147-170. 46.W. Wu and C. H. Tsay, “Hot Cracking Susceptibility of Fillers 52 and 82 in Alloy 690 Welding,” Metallurgical and Materials Transactions A, 30A (1999), 417-426. 47.S. Onodera, K. Ohnishi, H. Tsukada, K. Suzuki, T. Iwadate and Y. Tanaka, “Effect of Crack-Starter Bead Application on the Drop-weight NDT Temperature,” in Drop-Weight Test for Determination of Nil-Ductility Transition Temperature: User's Experience with ASTM Method E 208, ASTM, 1986, pp.34-55. 48.C.D. Lundin, K.K. Khan and D. Yang, “Reports on Heat Treatment of Steels Used in Boiler and Pressure Vessel Applications, Report No.1: Effect on Metallurgical Structure and Mechanical Properties,” WRC Bulletin 407 (1995), pp.1-49. 49.Y.Y. You, R.K. Shiue, R.H. Shiue and C. Chen, “The Study of Carbon Migration in Dissimilar Welding of the Modified 9Cr-1Mo Steel,” Journal of Materials Science Letters, 20 (2001), pp.1429-1432. 50.J. N. DuPont and C. S. Kusko, “Martensite Formation in Austenitic/Ferritic Dissimilar Alloy Welds,” Welding Journal, 82 (2007), pp.51s-54s. 51.T. W. Nelson, J. C. Lippold and M. J. Mills, “Investigation of Boundaries and Structures in Dissimilar Metal Welds,” Science and Technology of Welding and Joining, 3 (1998), pp.249-255. 52.T. W. Nelson, J. C. Lippold and M. J. Mills, “Nature and Evolution of the Fusion Boundary in Ferritic-austenitic Dissimilar Weld Metals, Part 1 - Nucleation and Growth,” Welding Journal, 78 (1999), pp.329s-337s. 53.T. W. Nelson, J. C. Lippold and M. J. Mills, “Nature and Evolution of the Fusion Boundary in Ferritic-austenitic Dissimilar Weld Metals, Part 2 - On-cooling Transformations,” Welding Journal, 79 (2000), pp.267s-277s. 54.P. Marek and M. Domankova, “Influence of 40% Deformation on Sensitization Characteristic of 316 and 316L Austenitic Stainless Steels,” Acta Metallurgica Slovaca, 13 (2007), pp.61-67. 55.T. Takalo, N. Suutala and T. Moisio, “Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transactions A, Vol.10A (1979), pp.1173-1181. 56.N. E. Nissley and J. C. Lippold, “Ductility-Dip Cracking Susceptibility of Nickel-based Weld Metals – Part 1: Strain-to-Fracture Testing,” Welding Journal, 87 (2008), 257s-264s. 57.F. N. Rhines and P. J. Wray, “Investigation of the Intermediate-Temperature Ductility Minimum in Metals,” Transactions of the ASM, 54 (1961), 117-128. 58.M. G. Collins and J. C. Lippold, “An Investigation of Ductility Dip Cracking in Nickel-Based Filler Metals – Part I,” Welding Journal, 82 (2003), 288s-295s. 59.M. G. Collins, A. J. Ramirez and J. C. Lippold, “An Investigation of Ductility Dip Cracking in Nickel-Based Filler Metals – Part II,” Welding Journal, 82 (2003), 348s-354s. 60.M. G. Collins, A. J. Ramirez and J. C. Lippold, “An Investigation of Ductility Dip Cracking in Nickel-Based Filler Metals – Part III,” Welding Journal, 83 (2004), 39s-49s. 61.A. J. Ramirez and J. C. Lippold, “High Temperature Behavior of Ni-base Weld Metal – Part I: Ductility and Microstructural Characterization,” Materials Science & Engineering A, A380 (2004), 259-271. 62.A. J. Ramirez and J. C. Lippold, “High Temperature Behavior of Ni-base Weld Metal – Part II: Insight into the Mechanism for Ductility Dip Cracking,” Materials Science & Engineering A, A380 (2004), 245-258. 63.N. E. Nissley, M. G. Collins, G. Guaytima and J. C. Lippold, “Development of Strain-to-Fracture Test for Evaluating Ductility-Dip Cracking in Austenitic Stainless Steels and Nickel-Base Alloys,” Welding in the World, 46 (2002), 32-40. 64.E. F. Nippes, W. F. Savage and G. Grotke, “Further Studies of the Hot-Ductility of High-Temperature Alloys,” Welding Research Council, New York, N.Y., 1957. 65.Y. Arata, F. Matsuda and S. Katayama, “Solidification Crack Susceptibility in Weld Metals of Fully Austenitic Stainless Steel (Report II),” Transactions of JWRI, 6 (1977), 105-116. 66.J. Honeycombe, T. G. Gooch, “Microcracking in Fully Austenitic Stainless Steel Weld Metal,” Metal Construction & British Welding Journal, 2 (1970), 375-380. 67.B. Hemsworth, T. Boniszewski, and N. F. Eaton, “Classification and Definition of High Temperature Welding Cracks in Alloys,” Metal Construction & British Welding Journal, 1 (1969), 5-16. 68.Y. C. Zhang, H. Nakagawa and F. Matsuda, “Weldability of Fe-36% Ni Alloy (Report III),” Transactions of JWRI, 14 (1985), 107-114. 69.D. M. Haddrill and R. G. Baker, “Microcracking in Austenitic Weld Metal,” British Welding Journal, 12 (1965). 70.N. E. Nissley, “Intermediate Temperature Grain Boundary Embrittlement in Ni-base Weld Metal,” Ph.D Dissertation, The Ohio State University, 2006. 71.M. G. Collins, “An Investigation of Ductility Dip Cracking in Nickel-Base Filler Materials,” Master Thesis, The Ohio State University, 2002. 72.J. C. Lippold and N. E. Nissley, “Ductility-Dip Cracking in High Chromium, Ni-Base Filler Metals,” in Hot Cracking Phenomena in Welds II, Springer Berlin Heidelberg, 2008, pp.409-425. 73.A. J. Ramirez and J. C. Lippold, “New Insight into the Mechanism of Ductility-Dip Cracking in Ni-Base Weld Metals,” in Hot Cracking Phenomena in Welds, Springer Berlin Heidelberg, 2005, pp.19-41. 74.R.E. Reed-Hill, “Physical Metallurgy Principles 3rd ed.,” PWS Publishing Company, 1994. 75.H. Hanninen, M. Ivanchenko, Y. Yagodzinskyy, V. Nevdacha, U. Ehrnsten and P. Aaltonen, “Dynamic strain aging of Ni-base alloys Inconel 600 and 690,” Proceeding 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – water reactors, Salt Lake City, Utah, August 14-18, 2005, pp.1423-1430. 76.A. K. Roy, A. Venkatesh, V. Marthandam, and A. Ghosh, “Tensile Deformation of a Nickel-base Alloy at Elevated Temperatures,” Journal of Materials Engineering and Performance, 17 (2008), pp.607-611. 77.W.W. Gerberich and K. Jatavallabhula, “Quantitative Factography and Dislocation Interpretations of the cyclic Cleavage Crack Growth Process,” Acta Metallurgica, 31 (1983), pp.241-255. 78.P. L. Andresen and F. P. Ford, “Life Prediction by Mechanistic Modeling and System Monitoring of Environmental Cracking of Iron and Nickel Alloys in Aqueous Systems,” Materials Science and Engineering, A103 (1988), pp.167-184. 79.F. P. Ford and P. L. Andresen, “Development and Use of a Predictive Model of Crack Propogation in 304/316L, A533B/A508, and Inconel 600/182 Alloys in 288°C Water,” in: Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Edited by G. J. Theus and J. R. Weeks, TMS, 1988, pp.789-800 80.P. L. Andresen, “Fracture Mechanics Data and Modeling of Environmental Cracking of Nickel-base Alloys in High Temperature Water,” Corrosion, 47 (1991), p.917-938. 81.R. B. Rebak, and Z. Szklarska-Smialowska, “The Mechanism of Stress Corrosion Cracking of Alloy 600 in High Temperature Water,” Corrosion Science, 38 (1996), pp.971-988. 82.F. P. Ford, “Mechanisms of Environmental Cracking Perticular to the Power Generation Industry,” Report NP2589, EPRI, Palo Alto, 1982. 83.F. P. Ford and P. L. Andresen, “Corrosion in Nuclear Systems: Environmentally Assisted Cracking in Light Water Reactors,” in: Corrosion Mechanisms in Theory and Practice, 2nd ed., Edited by P. Marcus, Marcel Dekker Inc., 2002, pp.605-642. 84.R. C. Newman, “Stress-corrosion Cracking Mechanisms,” in: Corrosion Mechanisms in Theory and Practice, 2nd ed., Edited by P. Marcus, Marcel Dekker Inc., 2002, pp.399-450. 85.C. Edeleanu and A. J. Forty, “Some Observations on the Stress-Corrosion Cracking of -Brass and Similar Alloys,” Philosophical Magazine, 5 (1960), pp.1029-1040. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34963 | - |
| dc.description.abstract | 在核能電廠中,異質金屬銲接為連接反應器壓力槽出入水口管嘴(低合金鋼)與冷卻水管件(不銹鋼或鎳基合金)常用之接合製程。為求降低異質材料間的冶金、機械及物性差異,目前銲接製程多使用鎳基合金作為填料。本研究主要針對A508-Alloy 52與316L-Alloy 52之異質金屬銲件,評估銲道、熱影響區及接合界面等區域之應力腐蝕特性,試驗方式則採用預置缺口的圓棒拉伸試片,在高溫水環境下以定速率拉伸(CERT)試驗進行之。此外,銲件顯微組織觀察、傳統氬銲與回火銲珠製程之施銲比較、以及鎳基填料Alloy 52與52M之熱裂敏感性評估等試驗,亦為本研究之探討要點。
實驗結果得知,A508-Alloy 52銲件熱影響區為變韌鐵與肥粒鐵之混合組織。單道次銲件熱影響區以晶粒粗大之變韌鐵為主;多道次銲件熱影響區因受到後續銲道回火影響,有發生晶粒細化、肥粒鐵含量增加與硬度下降等現象。A508-Alloy 52銲件接合界面處可觀察到麻田散鐵及Type II boundary。欲降低A508熱影響區之硬度,可藉銲後熱處理或回火銲珠製程來達成,其中後者對於無法進行長時間熱處理之大型組件具有便利性,適合應用在核電廠的銲補施工。316L-Alloy 52銲件熱影響區並未發生顯微組織改變,熱處理後銲道亦無敏化現象,唯銲道過渡區在施銲時易發生熱裂現象,但可藉由降低銲接熱輸入量,或在施銲鎳基填料前先以309L覆銲緩衝層等方式,降低其熱裂敏感性。在填料選擇上,Alloy 52M對於抑制銲後熱裂以及延性降低破裂之效果皆較Alloy 52為佳,因此在核電廠未來的銲補施工上,應可取代現行之Alloy 52填料。 CERT試驗結果證實,缺口試片可確實評估銲件特定區域之SCC特性。A508-Alloy 52銲道區域(包含接合界面)受SCC之影響主要反映在試片的延性損失,其抗SCC能力強弱依序為:銲道未稀釋區域>銲道過渡區>銲件接合界面處。觀察試片破斷面亦可獲得相同趨勢,即抗SCC能力較差者具有較大範圍的脆性區域。A508/Alloy 52接合界面處之顯微組織不連續性,以及沿Type II boundary破裂之現象,均為造成SCC劣化的主因。A508熱影響區受SCC之影響則反映在試片的缺口拉伸強度損失。使用較低電流進行多道次銲接,可細化A508熱影響區晶粒,並改善其抗SCC性質。316L- Alloy 52銲件之接合界面與母材測試結果顯示,其拉伸強度及抗SCC能力皆遜於Alloy 52銲道。 | zh_TW |
| dc.description.abstract | The welding of dissimilar metals is widely used for joining low alloy to stainless steels at several locations such as pipe and nozzle joints in nuclear reactor pressure vessels. Nickel- based alloys, such as Alloy 52, are often applied in dissimilar metal welds (DMWs) as filler metals to reduce differences in physical, metallurgical and mechanical properties between the involved materials. In this study, the susceptibility to the stress corrosion cracking (SCC) of the A508-Alloy 52 and 316L-Alloy 52 welds in high-temperature water were evaluated by using constant extension rate tensile (CERT) test with notched specimens. Furthermore, the TIG welding process, filler metal selection (Alloys 52 and 52M) and microstructure of the DMWs were also investigated.
Experimental results indicated that the heat-affected zone (HAZ) of the A508 side of DMWs consisted of a mixture of bainite and ferrite. For single-pass welds, the grain size in the HAZ of A508 side was considerably large and the structure was mainly bainite. However, the HAZ comprised mostly ferrite and fine grains in the multi-pass welds as a result of multiple weld thermal cycles during the process. The use of temper bead technique eliminated the need of post-weld heat treatment (PWHT) and lowered the HAZ hardness of the A508 side. Such a technique is particularly suitable for field repair and renovation. In the weld metal, martensite and Type II boundaries were observed in the transition zone adjacent to the weld interface of Alloy 52/A508, which may cause corrosion related failures in service. On the other hand, the HAZ of the 316L side showed neither microstructural change nor sensitization after a PWHT at 621°C/24 h. The transition region of the Alloy 52/316L weld metal was susceptible to hot cracking which could be reduced by lowering heat input in welding. Moreover, the weld overlay of a 309L buffer layer prior to deposit Alloy 52 on the 316L substrate significantly reduced the hot cracking susceptibility and could tolerate the substrate with higher contents of S and P. The results of varestraint tests demonstrated that Alloy 52M had better hot and ductility-dip cracking resistances than Alloy 52. As a result, it is recommended that Alloy 52 should be replaced by Alloy 52M for welding A508-316L and that kind of components in the nuclear power plant system. The results of the constant extension rate tensile (CERT) tests in 300°C water revealed that the notched round-bar specimen with a circumferential notch at various locations of the DMWs was useful in evaluating the SCC behavior of a narrow region in the welds. In the weld metal of A508-Alloy 52 welds, the relative susceptibility to SCC in terms of the ductility loss in increasing order of severity was as follows: the undiluted weld metal, the transition zone and the weld interface. SEM fractographic observations were consistent with the SCC results, i.e., an increased ductility loss or SCC susceptibility was associated with more brittle fractures. Apparently, the presence of Type II boundaries caused intergranular cracking and significantly reduced the SCC resistance of the weld in 300°C water. The structural discontinuity at the interface also increased the SCC susceptibility of the weld interface specimen.The test results of the A508 HAZ specimens clearly indicated that the lower welding current was beneficial to the SCC resistance,which was in terms of the loss of notched tensile strength, in the HAZ of A508 steel. In multi-pass welds, the use of a low heat input resulted in a better SCC resistance than that of a high heat input due to the existence of a more refined microstructure in the HAZ. Additionally, Alloy 52 weld metal also revealed better SCC resistance than either the 316L base metal or the weld interface of Alloy 52/316L. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:37:43Z (GMT). No. of bitstreams: 1 ntu-100-D96527018-1.pdf: 13878903 bytes, checksum: 1201a21c54c48d6936a736bdff39f9a2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iii 一、前言 1 二、文獻回顧 2 2-1 核電廠輕水式反應器及其材料簡介 2 2-1-1 輕水式反應器簡介及其分類 2 2-1-2 壓水式及沸水式反應器 2 2-1-3 反應器相關組件及材料選用 4 2-2 異質金屬銲件製程簡介 6 2-2-1 異質金屬間的物性差異 6 2-2-2 銲道之稀釋效應 8 2-2-3 鎳基銲條的發展與選擇 8 2-3 異質金屬銲件之破損現象 10 2-3-1 與銲接製程相關之破裂 10 2-3-2 運轉過程中引發之破裂 12 三、研究方法與過程 14 3-1 實驗材料與流程 14 3-2 銲接製程與銲後熱處理 14 3-3 回火銲珠製程 19 3-4 可調應變試驗 19 3-5 金相試片製備及微硬度量測 24 3-6 顯微組織觀察與成分分析 24 3-7 模擬核電廠反應器運轉環境之應力腐蝕試驗 27 四、結果與討論 34 4-1 A508-Alloy 52/52M銲件顯微組織分析 34 4-1-1 As-welded銲件 34 4-1-2 熱處理後之銲件 53 4-1-3 回火銲珠製程之影響 58 4-2 316L-Alloy 52/52M銲件顯微組織分析 65 4-2-1 As-welded銲件 65 4-2-2 熱處理後之銲件 70 4-2-3 銲件熱裂問題之改善 76 4-3 鎳基填料Alloy 52與52M之熱裂敏感性評估 86 4-4 高溫水環境之慢速率拉伸試驗測試結果 99 4-4-1 A508熱影響區及母材之測試結果 99 4-4-2 銲件接合界面處及Alloy 52銲道之測試結果 105 4-4-3 316L-Alloy 52銲件接合界面處與母材之測試結果 125 五、結論 135 六、參考文獻 137 | |
| dc.language.iso | zh-TW | |
| dc.subject | A508低合金鋼 | zh_TW |
| dc.subject | 回火銲珠製程 | zh_TW |
| dc.subject | 可調應變試驗 | zh_TW |
| dc.subject | 應力腐蝕破裂 | zh_TW |
| dc.subject | 鎳基填料Alloy 52與52M | zh_TW |
| dc.subject | 316L不銹鋼 | zh_TW |
| dc.subject | 異質金屬銲接 | zh_TW |
| dc.subject | 銲件接合界面 | zh_TW |
| dc.subject | Stress corrosion cracking. | en |
| dc.subject | Dissimilar metal welding | en |
| dc.subject | A508 steel | en |
| dc.subject | 316L stainless steel | en |
| dc.subject | Alloys 52 and 52M | en |
| dc.subject | Weld interface | en |
| dc.subject | Temper bead technique | en |
| dc.subject | Varestraint test | en |
| dc.title | A508-Alloy 52與316L-Alloy 52異質金屬銲件之高溫水環境應力腐蝕特性研究 | zh_TW |
| dc.title | Stress Corrosion Cracking Behavior of A508-Alloy 52 and 316L-Alloy 52 Welds under High-temperature Water | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭榮卿,蔡履文,吳憲政,薛人愷 | |
| dc.subject.keyword | 異質金屬銲接,A508低合金鋼,316L不銹鋼,鎳基填料Alloy 52與52M,銲件接合界面,回火銲珠製程,可調應變試驗,應力腐蝕破裂, | zh_TW |
| dc.subject.keyword | Dissimilar metal welding,A508 steel,316L stainless steel,Alloys 52 and 52M,Weld interface,Temper bead technique,Varestraint test,Stress corrosion cracking., | en |
| dc.relation.page | 143 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 13.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
