請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34433
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 段維新 | |
dc.contributor.author | Yeh-Wu Lao | en |
dc.contributor.author | 勞業武 | zh_TW |
dc.date.accessioned | 2021-06-13T06:08:21Z | - |
dc.date.available | 2008-06-22 | |
dc.date.copyright | 2006-06-22 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-06-01 | |
dc.identifier.citation | 1. G. Y. Sung, and C. H. Kim, “Effect of Grain-Size Distribution on the Barrier Voltage of ZnO Varistors,” Adv. Ceram. Mater., 2 [4] 841-47 (1987).
2. J. Ott, A. Lorenz, M. Harrer, E. A. Preissner, C. Hesse, A. Feltz, A. H. Whitehead, and M. Schreiber, “The Influence of Bi2O3 and Sb2O3 on the Electrical Properties of ZnO-Based Varistors,” J. Electroceram., 6 [2] 135-46 (2001). 3. B. Balzer, M. Hagemeister, P. Kocher, and L. J. Gauckler, “Mechanical Strength and Microstructure of Zinc Oxide Varistor Ceramics,” J. Am. Ceram. Soc., 87 [10] 1932-38 (2004). 4. M. Elfwing, R. Österlund, and E. Olsson, “Differences in Wetting Characteristics of Bi2O3 Polymorphs in ZnO Varistor Materials,” J. Am. Ceram. Soc., 83 [9] 2311-14 (2000). 5. E. M. Ei-Meliegy, H. I. Saleh, and M. Selim, “Sintering and Characterization of Bismuth-Oxide-Containing Zinc Oxide Varistors,” Mater. Character., 52, 371-78 (2004). 6. W. Onreabroy, T. Tunkasiri, and N. Sirikulrat, “Effects of Alumina Surrounding in Sintering Process on ZnO-Bi2O3 Varistors Doped with CoO,” Mater. Letters, 59, 283-88 (2005) 7. D. Kovar, and M. J. Readey, “Grain Size Distributions and Strength Variability of High-Purity Alumina,” J. Am. Ceram. Soc., 79 [2] 305-12 (1996). 8. H. L. O’Donnell, M. J. Readey, and D. Kovar, “Effect of Glass Addition on Indentarion-Strength Behavior of Alumina,” J. Am. Ceram. Soc., 78 [4] 849-56 (1995). 9. R. Metz , H. Delalu, J. R. Vignalou, N. Achard, and M. Elkhatib, “Electrical Properties of Varistors in Relation to their True Bismuth Composition after Sintering,” Mater. Chem. Phys., 63, 157-62 (2000). 10. Y. M. Chiang, W. D. Kingery, and L. M. Levinson, “Compositional Changes Adjacent to Grain Boundaries during Electrical Degradation of a ZnO varistor,” J. Appl. Phys., 53 [3] 1765-68 (1982). 11. J. Kim, T. Kimura, and T. Yamaguchi, “Microstructure development in Sb2O3-doped ZnO,” J. Mater. Sci., 24, 2581-86 (1989). 12. T. K. Gupta, “Application of Zinc Oxide Varistors,” J. Am. Ceram. Soc., 73 [7] 1817-40 (1990). 13. W. D. Kingery, “Densification during Sintering in the Presence of a Liquid Phase. I. Theory,” J. Appl. Phys., 30 [3] 301-06 (1959). 14. R. M. German, Sintering Theory and Practice; John Wiley & Sons Inc, New York (1996). 15. J. R. Lee, Y. M. Chiang, and G. Ceder, “Pressure-Thermodynamic Study of Grain Boundaries: Bi Segregation in ZnO,” Acta Metall. Mater., 45 [3] 1247–57 (1997). 16. J. Luo, H. Wang, and Y. M. Chiang, “Origin of Solid-State Activated Sintering in Bi2O3-Doped ZnO,” J. Am. Ceram. Soc., 82 [4] 916–20 (1999). 17. M. A. de la Rubia, J. F. Fernandez, and A. C. Caballero, “Equilibrium Phases in the Bi2O3-rich Region of the ZnO-Bi2O3 System,” J. Eur. Ceram. Soc., 25, 2215-17 (2005). 18. D. R. Clarke, “Varistors Ceramics,” J. Am. Ceram. Soc., 82 [3] 485-502 (1999). 19. M. Inada, “Formation Mechanism of Nonohmic Zinc Oxide Ceramics,” Jpn. J. Appl. Phys., 19 [3] 409-19 (1980). 20. H. Wang, and Y. M. Chiang, “Thermodynamic Stability of Intergranular Amorphous Films in Bismuth-Doped Zinc Oxide,” J. Am. Ceram. Soc., 81 [1] 89-96 (1998). 21. T. Senda, and R. C. Bradt, “Grain Growth in Sintered ZnO and ZnO-Bi2O3 Ceramics ,” J. Am. Ceram. Soc., 73 [1] 106-14 (1990). 22. J. H. Choi, N. M. Hwang, and D.Y. Kim, “Pore-Boundary Seperation Behavior during Sintering of Pure and Bi2O3-Dope ZnO Ceramics,” J. Am. Ceram. Soc., 84 [6] 1398-400 (2001). 23. J. Kim, T. Kimura, and T. Yamaguchi, “Effect of Bismuth Oxide Content on the Sintering of Zinc Oxide,” J. Am. Ceram. Soc., 72 [8] 1541-44 (1989). 24. J. M. Heintz, M. Sanz, E. Marquestaut, J. Etourneau, and J. P. Bonnet, “Influence of BaCuO2 on the Sintering and the Properties of YBa2Cu3O7-δ-Based Ceramics,” J. Am. Ceram. Soc., 74 [5] 998-1002 (1991). 25. W. H. Tuan, and T. C. Tien, “Effect of Addition of a Small Amount of Silver on the Microstructure and Mechanical Properties of YBa2Cu3O7-x,” Mater. Chem. Phys., 39, 72-75 (1994). 26. A. Rečnik, N. Daneu, T. Waltther, and W. Made, “Structure and Chemistry of Basal-Plane Inversion Boundaries in Antimony Oxide-Doped Zinc Oxide,” J. Am. Ceram. Soc., 84 [11] 2657-68 (2001). 27. W. Jo, S. J. Kim,and D. Y. Kim, “Analysis of the Etching Behavior of ZnO Ceramics,” Acta Mater., 53, 4185-88 (2005). 28. M. Peiteado , J. F. Fern´andez, and A. C. Caballero, “Processing Strategies to Control Grain Growth in ZnO Based Varistors,” J. Eur. Ceram. Soc., 25, 2999–3003 (2005). 29. C. H. Lu, N. Chyi, H. W. Wong, and W. J. Hwang, “Effects of Additives and Secondary Phases on the Sintering Behavior of Zinc Oxide-Based Varistors,” Mater. Chem. Phys., 62, 164-68 (2000). 30. N. Daneu, A. Rečnik, and S. Bernik, “Grain Growth Control in Sb2O3-Doped Zinc Oxide,” J. Am. Ceram. Soc., 86 [8] 1379-84 (2003). 31. G. C. Miles, and A. R. West, “Polymorphism and Thermodynamic Stability of Zn7Sb2O12,” J. Am. Ceram. Soc., 88 [2] 396-98 (2005). 32. J. Wong, “Microstructure and Phase Transformation in a High Non-Ohmic Metal Oxide Varistor Ceramic,” J. Appl. Phys., 46 [4] 1653-59 (1975). 33. S. Bernik, P. Zupancčič, and D. Kolar, “Infuence of Bi2O3/TiO2, and Cr2O3 Doping on Low-voltage Varistor Ceramics,” J. Eur. Ceram. Soc., 19, 709–13 (1999). 34. J. R. Lee, and Y. M. Chiang, “Bi Segregation at ZnO Grain Boundaries in Equilibrium with Bi2O3-ZnO Liquid,” Solid State Ionics, 75, 79-88 (1995). 35. D. R. Clarke, “Grain-Boundary Segregation in a Commercial ZnO-Based Varistor,” J. Appl. Phys., 50 [11] 6829-32 (1979). 36. E. Olsson, G. L. Dunlop, and R. Österlund, “Development of Functional Microstructure during Sintering of a ZnO Varistor Material,” J. Am. Ceram. Soc., 76 [1] 65-71 (1993). 37. K. I. Kobayashi, O. Wada, M. Kobayashi, and Y. Takada, “Continuous Existence of Bismuth at Grain Boundaries of Zinc Oxide Varistor without Intergranular Phase,” J. Am. Ceram. Soc., 81 [8] 2071-76 (1998). 38. T. K. Gupta, and W. G. Carlson, “A Grain-Boundary Defect Model for Instability/Stability of a ZnO varistor,” J. Mater. Sci., 20, 3487-3500 (1985). 39. C. Gόmez-Yáñez, J. Velázquez-MoralesO, and E. G. Palacios, “Mechanical Activation of Spinel and Pyrochlore Phases in ZnO Based Varistors,” J. Electroceram., 13, 745–50 (2004). 40. E. Olsson, and G. L. Dunlop, “Characterization of Individual Interfacial Barries in a ZnO Varistor Material,” J. Appl. Phys., 66 [8] 3666-75 (1989). 41. E. Olsson, and G. L. Dunlop, “Interfacial Barriers to Electrical Conduction in ZnO Varistor Materials,” Ceramic. Trans., Vol. 3, pp. 65-72 Adv. in varistor Tech., ed. L. M. Levinson, The Am. Ceram. Soc., Ohio, USA (1989). 42. J. Clayton, H. Takamura, R. Metz, H. L. Tuller, and B. J. Wuensch, “The Electrical and Defect Properties of Bi3Zn2Sb3O14 Pyrochlore: A Grain-Boundary Phase in ZnO-Based Varistors,” J. Electroceram., 7, 113-120 (2001). 43. E. Olsson, and G. L. Dunlop, “The Effect of Bi2O3 content on the Microstructure and Electrical Properties of ZnO Varistor Materials,” J. Appl. Phys., 66 [9] 4317-24 (1989). 44. L. M. Levinson, and H. R. Philipp, “The Physics of Metal Oxide Varistors,” J. Appl. Phys., 46 [3] 1332-41 (1975). 45. C. P. Fah, and J. Wang, “Effect of High-Energy Mechanical Activation on the Microstructure and Electrical Properties of ZnO-Based Varistors,” Solid State Ionics., 132, 107–17 (2000). 46. S. N. Bai, J. S. Shieh, and T. Y. Tseng, “Characteristic Analysis of ZnO Varistors Made with Spherical Precipitation Powders,” Mater. Chem. Phys., 41, 104–09 (1995). 47. G. Hohenberger, G. Tomandl, R. Ebert, and T. Taube, “Inhomogeneous Conductivity in Varitor Ceramics: Methods of Investigation,” J. Am. Ceram. Soc., 74 [9] 2067-72 (1991). 48. M. I. Mendelson, “Average Grain Size in Polycrystalline Ceramics,” J. Am. Ceram. Soc., 52, 443–46 (1969). 49. JCPD 05-0664, Internation Center for Diffraction Data, JCPDs, Penn, USA (1983). 50. M. Inada, “Crystal Phase of Nonohmic Znic Oxide Ceramics,” Jpn. J. Appl. Phys., 17 [1] 1-10 (1978). 51. N. Wakiya, S. Y. Chun, C. H. Lee, O. Sakurai, K. Shinozaki, and N. Mizutani, “Effect of Liquid Phase and Vaporization on the Formation of Microstructure of Pr Doped ZnO Varistor,” J. Electroceram., 4, S1 15-23 (1999). 52. F. Greuter, “Electrically Active Interfaces in ZnO Varistors,” Solid State Ionics, 75, 67-78 (1995). 53. W. G. Morris, “Physical Properties of the Electrical Barriers in Varistors ,” J. Vac. Sci. Technol., 13, 926-31 (1976). 54. J. Luo, and Y. M. Chiang, “Equilibrium Thickness of Amorphous Films on {11 0}Surfaces of Bi2O3-Doped ZnO,” J. Eur. Ceram. Soc., 19, 697-701 (1999). 55. C. M. Wang, J. F. wang, W. B. Su, G. Z. Zang, and P. Qi, “Electrical Properties of SnO2.CuO.Ta2O5 Varistor System,” Mater. Letters, 59, 201-04 (2005). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34433 | - |
dc.description.abstract | ZnO變阻器(varistor)之電性與微結構息息相關。本研究主要在探討,當添加Bi2O3 或Bi2O3+Sb2O3時,對其微結構及電性之影響,尤其是對ZnO晶粒大小分佈之影響因素。
實驗結果顯示,Bi2O3從800℃開始劇烈揮發,使用與試樣相同組成之粉體床(powder bed)時,則可以非常有效地減少揮發,當沒有使用粉體床時,暫時的液相出現在Bi2O3-doped ZnO的系統中,當添加量到達某ㄧ臨界值時,此暫時之液相,有助於ZnO之緻密化及晶粒成長。燒結後,沒有發現殘留的液相,從dihedral angle的改變及電性的量測結果,可以證明Bi3+ 離子在晶界的偏析行為。但是,偏析對晶粒大小分佈之影響不大。 Zn7Sb2O12 spinel phase及大量inversion boundaries (IBs),在添加Bi2O3+Sb2O3之系統中生成,不使用粉體床時,可以減少晶粒大小及其分佈。 當使用粉體床(powder bed)時,Bi-rich phase存在Bi2O3-doped ZnO之系統中,燒結過程中,則Bi-rich liquid phase更容易促進晶粒的成長。但是,溫度與添加量的增加,卻使得晶粒較均勻。同時添加Bi2O3與Sb2O3時,在降溫過程中,Zn2Bi3Sb3O14 pyrochlore phase會大量析出,對電性是不利的。 不管是Bi-segregation或是Bi-rich liquid phase,都增加了晶界的能障,因而造成非線性I-V特性。本研究以微結構分析為基礎,提出ㄧ個對單一晶界的崩潰電壓(Vgb)之計算方法。 | zh_TW |
dc.description.abstract | The electrical properties of ZnO varistors depend strongly on their microstructure. In the present study, microstructural evolution of ZnO, Bi-doped ZnO and Bi,Sb-codoped ZnO during sintering is investigated. Emphasis is made on the factors to control the grain size distribution of ZnO grains.
Experimental results indicated that the vaporization of Bi2O3 is dramatical above 800℃. A powder bed with the same composition as that of the specimens can significantly reduce the vaporization. A transient liquid phase is present in the Bi2O3-doped ZnO systems as no powder bed is used. Such transient liquid phase enhances the densification and grain growth as its amount is higher than a critical value. After sintering, no residual liquid phase is found. The segregation of Bi3+ ion is evidenced by the change of dihedral anagle and electrical properties. The segregation has little effect on the grain size distribution of ZnO grains. Zn7Sb2O12 spinel and inversion boundaries (IBs) are found in the Bi,Sb-codoped ZnO specimens when they are sintered without a powder bed. The presence of the spinel and IBs reduces the grain size and its distribution. By using a powder bed, a Bi-rich phase is existed in the Bi-doped ZnO specimens. The presence of the Bi-rich liquid phase enhances significantly the size of ZnO grains. In the Bi,Sb-codoped ZnO specimens, apart from the Bi-rich liquid phase, both pyrochlore and spinel are formed after sintering. The presence of the pyrochlore is detrimental to the electrical properties. Both the Bi-segregation and Bi-rich liquid phase could provide an electrostatic barrier at grain goundaries and result in a nonlinear I-V characteristic. In the present study, based on the microstructure analysis, a methodology to calculate the breakdown voltage per grain boundary (Vgb) is proposed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:08:21Z (GMT). No. of bitstreams: 1 ntu-95-R93527007-1.pdf: 9687966 bytes, checksum: 7cfcf2a7817ed40ffe5761d5eaecd84c (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 第一章 前言………………………………1
第二章 基礎理論與文獻回顧……………3 2-1 ZnO之晶體與能帶結構………………3 2-2 液相燒結機構……………………….5 2-3 ZnO變阻器之組成與微結構……….13 2-4 ZnO變阻器之電性………………….25 2-5 重量損失之影響……………………29 2-6 晶粒大小分佈之影響………………33 第三章 實驗流程……………………….36 3-1 起始材料……………………………36 3-2 試樣製備……………………………37 3-3 特性分析……………………………41 3-3-1 重量損失量測……………………41 3-3-2 體密度量測………………………41 3-3-3 相分析…………………….…….41 3-3-4 微結構分析……………….…….42 3-3-5 晶粒大小分佈分析………………42 3-3-6 電性量測…………………………47 第四章 結果…………………………….49 4-1 不使用粉體床(powder bed)………49 4-1-1 重量損失…………………………49 4-1-2 體密度……………………………51 4-1-3 相分析……………………………54 4-1-4 微結構分析………………………59 4-1-5 晶粒大小分佈……………………63 4-1-5-1 溫度之影響 (固定組成)…….63 4-1-5-2組成之影響 (固定溫度)………65 4-1-6 電性分析…………………………73 4-2 使用粉體床…………………………78 4-2-1 重量損失…………………………78 4-2-2 體密度……………………………80 4-2-3 相分析……………………………82 4-2-4 微結構分析………………………87 4-2-5 晶粒大小分佈……………………90 4-2-5-1 溫度之影響 (固定組成)…….90 4-2-5-2組成之影響 (固定溫度)………98 4-2-6 電性分析……………………….103 第五章 討論…………………………..109 5-1 對重量損失之影響……………….109 5-2 對體密度之影響………………….111 5-3 對相之影響……………………….113 5-4 對微結構之影響………………….114 5-5 對晶粒大小分佈之影響………….119 5-6 對電性之影響…………………….124 第六章 結論…………………………..129 第七章 建議…………………………..131 參考文獻……………………………….132 | |
dc.language.iso | zh-TW | |
dc.title | Bi2O3與Sb2O3對ZnO變阻器的微結構及電性之影響 | zh_TW |
dc.title | Effects of Bi2O3 and Sb2O3 on the microstructure and electrical properties of ZnO varistors | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王錫福,許志雄,陳惠如 | |
dc.subject.keyword | 氧化鋅,氧化鉍,氧化銻,變阻器,晶粒大小分佈,液相燒結,微結構,電性, | zh_TW |
dc.subject.keyword | ZnO,Bi2O3,Sb2O3,Varistor,Grain size distribution,Liquid phase sintering,Microstructure,Electrical property, | en |
dc.relation.page | 137 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-06-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 9.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。