Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34048
Title: 模糊類神經網路之自評自調學習法
Adaptive Critic Learning Algorithm of Neuro-Fuzzy Inference System
Authors: Chia-Hsiang Tu
塗家祥
Advisor: 林巍聳
Keyword: 模糊類神經網路,自評自調,雙啟發規劃法,類神經網路,模糊控制,
Neuro-fuzzy inference system,adaptive critic,dual heuristic programming,neural network,fuzzy control,
Publication Year : 2006
Degree: 碩士
Abstract: 本研究的目的是要發展一套自評自調模糊類神經網路,使機器能透過學習程序自動建立系統模型或控制器。本文以雙啟發規劃法為基礎配合採用高效率之珈克畢恩(Jacobian)解法推導出自評自調學習法則。在控制應用方面,此自評自調模糊類神經網路能夠從混沌開始終而建立合用的控制器,在建立系統模型應用方面,此網路能透過順序最佳化的學習程序逐漸逼近給予之任意時續函數。本設計採用菅野(Sugeno)一階模糊推論作為基本學習模組,再將其轉換並擴展為類神經網路的學習結構,並建立自評自調學習演算法以自動調整前件和後件的網路參數,終而達成自動學習的目標。本文詳述整個設計的細節,並搭配納倫珈(Narendra)基準系統來驗證此自評自調演算法的成效。最後將此自評自調模糊類神經網路應用於控制旋轉倒單擺的運動,電腦模擬結果顯示此旋轉倒單擺系統能夠從混沌開始學習,終而達成上甩、平衡和追隨行進的所有控制動作。
The goal of this research is to develop an adaptive critic neuro-fuzzy inference system (NFIS) for modeling and control. On the backbone of dual heuristic programming (DHP), a DHP adaptive critic learning scheme that utilizes an effective network Jacobian acquisition is proposed. In control applications, the adaptive critic NFIS can learn from scratch to achieve the control objective. In modeling applications, it can approximate arbitrary continuous function through sequential optimization. The learning structure is based on NFIS that contains fuzzy if-then rules of first-order Sugeno fuzzy model. The tuning rules of premise and consequent parameters are derived. Narendra’s benchmark system is used to verify the performance of the proposed adaptive critic learning algorithm. The ability of modeling is demonstrated by approximating a nonlinear continuous function. The proposed design is applied to obtain the control of a rotary inverted pendulum control. Simulation results show that the rotary pendulum system can learn from scratch to obtain swing-up, balancing and trajectory tracking control.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34048
Fulltext Rights: 有償授權
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
694.68 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved