請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31971
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧信嘉(Hsin-Chia Lu) | |
dc.contributor.author | Tzu-Ming Fang | en |
dc.contributor.author | 方子銘 | zh_TW |
dc.date.accessioned | 2021-06-13T03:26:24Z | - |
dc.date.available | 2006-07-31 | |
dc.date.copyright | 2006-07-31 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-28 | |
dc.identifier.citation | [1] G. F. Svelto and R. Castello, “A bond-wire inductor-MOS varactor VCO tunable from 1.8 GHz to 2.4 GHz,” IEEE Trans. Microwave Theory and Tech., vol. 50, pp. 403-407, Jan. 2002.
[2] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999. [3] A. Hajimiri and T. H. Lee, “A general theory of the phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998. [4] J. R. Long, “Passive components for silicon RF and MMIC design,” IEICE Trans. Electronics of Solid-State Circuits (EIC Japan), vol. E86-C, no. 6, pp. 1022-1031, Jun. 2003, invited paper for the Special Issue on High-Performance Analog Integrated Circuits. [5] J. Cranincks and M. Steyeart, “A 1.8 GHz CMOS low phase noise voltage controlled oscillator with prescaler,” IEEE J. Solid-State Circuits, vol. 30, pp. 1474-1482, Dec. 1995. [6] P. M. Basedau. “Analysis and Design of CMOS LC and Crystal Oscillators,” PhD thesis, Swiss Federal Institute of Technology, Zurich, 1999. [7] S. Jenei, S. Decoutere, K. Maex, and B. Nauwelaers, “Add-on Cu/SiLKTM module for high Q inductors,” IEEE Electron Device Lett., vol. 23, no. 4, pp. 173-175, April 2002. [8] H. Jiang, W. Ye, J. -L. A. Yeh, and N. C. Tien, “On-chip spiral inductors suspend over deep copper-lined cavities,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 12, pp. 2415-2423, Dec. 2000. [9] E. -C. Park, Y. -S. Choi, J. -B. Yoon, S. Hong, and E. Yoon, “Fully integrated low phased-noise VCO’s with on-chip MEM’s inductors,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 289-296, Jan. 2003. [10] S. P. Voinigescu, D. Marchesan, and M. A. Copeland, “A family of monolithic inductor-varactor SiGe-HBT VCO’s for 20-GHz to 30-GHz LMD’s and fiber-optical receiver applications,” in Proc. IEEE RFIC Symp., pp. 173-176, June 2000. [11] K. Ettinger, A. Stelzer, C. G. Diskus, W. Thomann, J. Fenk, and R. Weigel, “Single-chip 20-GHz VCO and frequency divider in SiGe technology,” in IEEE MTT-S Int. Microwave Symp. Dig. pp. 835-838, June 2002. [12] T. M. Hancock, I. Gresham, and G. M. Rebeiz, “Compact low phase-noise 23-GHz VCO fabricated in a commercial SiGe Bipolar process,” in Proc. 33rd Eur. Microwave Conf., pp. 575-578, 2003. [13] B. Jung and R. Harjani, “A 20-GHz VCO with 5-GHz tuning range in 0.25μm CMOS SiGe BiCMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 178-179, Feb. 2004. [14] H. -Y. Chang, H. Wang, Y. -C. Wang, P. -C. Chao and C. -H. Chen, “A 22-GHz ultra low phase noise push-push dielectric resonator oscillator using MMICs,” European GAAS Conference Proceedings, pp. 33-36, Oct. 2004. [15] Carl R. C. De Ranter, Michiel S.J. Steyaert, “A 0.25μm CMOS 17 GHz VCO,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 370-371, Feb. 2001. [16] B. A. Floyd, C. -M. Hung, and Kenneth K. O, “A 15 GHz wireless interconnect implemented in a 0.18μm CMOS technology using integrated transmitter, receivers, and antennas,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 155-158, June 2001. [17] M. Tiebout, “Physical scaling of integrated inductor layout and model and its application to WLAN VCO design at 11 GHz and 17 GHz,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’03), vol. 1, pp. Ⅰ.637-Ⅰ.640, May 2003. [18] J. Kim, J. -K Kim, B. -J. Lee, N. Kim, D. -K. Jeong, W. Kim, “A 20 GHz phase-locked loop for 40 Gb/s serializing transmitter in 0.13μm CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 144-147, June 2005. [19] G. Le Grand de Mercey, “A 18 GHz rotary traveling wave VCO in CMOS with I/Q outputs,” Proc. European Solid-State Circuits Conf., pp. 489-492, 2003. [20] H. Jacobsson, M. Bao, L. Aspermyr, A. Mercha and G. Carchon, “Low phase noise sub-1V supply 12 and 18 GHz VCOs in 90 nm CMOS,” in IEEE MTT-S Int. Microwave Symp. Dig. pp. 573-576, June 2006. [21] E. Linten, et al., “Low power voltage controlled oscillators in 90 nm CMOS using high quality thin film postprocessed inductors,” IEEE J. Solid-State Circuits, vol. 40, pp. 1922-1931, Sep. 2005. [22] T. -P. Wang, R. -C. Liu, H. -Y. Chang, L. -H. Lu, H. Wang, “A 22 GHz push push CMOS oscillator using micromachined inductors,” IEEE Microwave and wireless components Lett., vol. 15, no. 12, pp. 859-861, Dec. 2005. [23] P. Kinget, Integrated GHz Voltage Controlled Oscillators. Norwell, MA: Kluwer, 1999, pp. 353-381. [24] D. Wang and X. Wang, “The performance comparison of CMOS vs Bipolar VCO in SiGe BiCMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig. pp. 101-104, June 2003. [25] N. M. Nguyen and R. G. Meyer, “Start up and frequency stability in high -requency oscillators,” IEEE J. Solid-State Circuits, vol. 2, pp. 810-820, May 1992. [26] P. -C. Huang, M. -D. Tsai, H. Wang, C. -H. Chen, C. -S. Chang, “A 114 GHz VCO in 0.13μm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005. [27] T. H. Lee. The Design of CMOS Radio Frequency Integrated Circuits. Cambridge University Press, Cambridge, UK, 1998. [28] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, March 1996. [29] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 743-752, May 1998. [30] T. S. D. Cheung and J. R. Long, “Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. Solid-State Circuits, vol. 41, pp. 1183-1200, May 2006. [31] A. M. Niknejad and R. G. Meyer, “Analysis, design and optimization of spiral inductors and transformers for Si RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 1470-1481, Oct. 1998. [32] K. B. Ashby, et al., “High Q inductors for wireless applications in a complementary silicon bipolar process,” IEEE J. Solid-State Circuits, vol. 31, pp. 4-9, Jan. 1996. [33] J. R. Long and M. A. Copeland, “The modeling, characterization, and design of monolithic inductors for silicon RF IC’s,” IEEE J. Solid-State Circuits, vol. 32, pp. 357-369, Mar. 1997. [34] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. on Electron Devices, vol. 47, no 3, pp. 560-568, Mar. 2000. [35] N. M. Nguten and R. G. Meyer, “Si IC-compatible inductors and LC passive filter,” IEEE J. Solid-State Circuits, vol. 25, pp. 1028-1031, Aug. 1990. [36] M. Park, S. Lee, C. S. Kim, H. K. Yu and K. S. Nam, “ The detailed analysis of high Q CMOS-compatible microwave spiral inductors in silicon technology,” IEEE Trans. on Electron Devices, vol. 45, no 9, pp. 1953-1959, Sep. 1998. [37] J. N. Burghartz, M. Soyuer and K. A. Jenkins, “Microwave inductors and capacitors in standard multilevel interconnect silicon technology,” IEEE Trans. Microwave Theory and Techniques, vol. 44, pp. 100-104, Jan. 1996. [38] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Tran. Parts, Hybrids, Pack., vol. PHP-10, pp. 101-109, June 1974. [39] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, New York, NY: Oxford University Press, 1998. [40] T. P. Tsividis, Operation and Modeling of the MOS Transistros, New York, NY: McGraw-Hill, 1987 ch.2. [41] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, June 2000. [42] R. Castello et al., “A ±30% tuning ragne varactor compatible with future scaled technologies,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 34-35, June 1998. [43] F. Svelto et al., “A metal-oxide semiconductor varactor,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 164-166, April 1999. [44] C. Patrick Yue et al., “Analysis and optimization of accumulation-mode varactor for RF ICs,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 32-33, June 1998. [45] H. G. Booker, Energy in electromagnetism. London/New York: Peter Peregrinus (on behalf of the IEE), 1982. [46] D. B. Leeson, “A simple model of feedback oscialltor noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966. [47] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998. [48] A. Hajimiri and T. H. Lee, “Correction to a general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 928, June 1998. [49] K. Lim, S. Pinel, M. F. Davis, A. Sutono, C. -H. Lee, D. Heo, A. Obatoynbo, J. Laskar, E. M. Tentzeris, and R. Tummala, “RF-system-on-package (SOP) for wireless communications,” IEEE Micro, vol. 3, no. 1, pp. 88-99, Mar. 2002. [50] J. Bray and L. Roy, “Microwave characterization of a microstrip line using a two-port ring resonator with an improved lumped-element model,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 5, pp. 1540-1547, May 2003. [51] R. Kulke et al., “Investigation of ring-resonators on multilayer LTCC,” in IEEE MTT-S Int. Microwave Symp. Dig. May 2001. [52] L. Lewin, “Radiation from discontinuity in strip-line,” Proc. Inst. Elect. Eng., vol. 107c, pp. 163-170, 1960. [53] D. Deslandes and W. Wu, “Integrated transition of coplanar to rectangular waveguides,” in IEEE MTT-S Int. Microwave Symp. Dig. pp. 619-622, June 2001. [54] Y. Cassivi and K. Wu, “Low cost microwave oscillator using substrate integrated waveguide cavity,” IEEE Microwave Wireless compon. Guided Wave Lett., vol. 13, no. 2, pp. 48-50, Feb. 2003. [55] H. Li, W. Hong, T. J. Cui, and K. Wu, “Propagation characteristics of substrate integrated waveguide based on LTCC,” in IEEE MTT-S Int. Microwave Symp. Dig. pp. 2045-2048, June 2003. [56] H. Uchimura, T. Takenoshita, and M. Fujii, “Development of a laminated waveguide,” IEEE Trans. Microwave Theory and Tech., vol. 46, pp. 2438-2443, Dec. 1998. [57] D. M. Pozar, Microwave Engineering, 3 rd. New York: Wiley, 2003. [58] D. Stevens, and J. Gipprich, “Microwave characterization and modeling of multilayered cofired ceramic waveguides,” The International Journal of Microcircuits and electronic packaging, vol. 22, no. 1, pp. 43-48, First Quarter 1999. [59] R. S. Kwok and J. F. Liang, “Characterization of high-Q resonators for microwave-filter applications,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 111-114, Jan. 1999. [60] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks and Coupling Structures. New York, NY: McGraw-Hill, 1964. [61] http://microwave.ee.cuhk.edu.hk/ [62] http://www.ltcc.de/ [63] http://www.acxc.com.tw/ltcc.php [64] Advanced Design System (ADS) Momentum 2004A, Agilent EEsof EDA. [65] M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, “Simulated and measured results from a Duroid-based planar MBG cavity resonator filter,” IEEE Microwave and wireless components Lett., vol. 10, no. 12, pp. 528-530, Dec. 2000 [66] Stephen H. Hall, Garrett W. Hall and James A. McCall, High-Speed Digital System Design. New York: Wiley, 2000. [67] Che Chung Kuo, “Flip-chip applications for mmw coplanar filter and IC,” Master`s Thesis, National Central University, Taoyuan, Taiwan, June, 2004. [68] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillator,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999. [69] K. -K. Hung, P. -K. Ko, C. Hu, and Y. -C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. on Electron Devices, vol. 37, no. 3, pp. 654-665, Mar. 1990. [70] C. -C. Ho, C. -W. Kuo, Y. -J. Chan, W. -Y. Lien, and J. -C. Guo, “0.13μm RF CMOS and varactor performance optimization by multiple gate layout,” IEEE Trans. on Electron Devices, vol. 51, no. 12, pp. 2181-2185, Dec. 2004. [71] C. -C. Ho, G. -H. Liang, C. -F. Huang, Y. -J. Chan, C. -S. Chang, and C. -P. Chao, “VCO phase-noise improvement by gate-finger configuration of 0.13μm CMOS transistors,” IEEE Electron Device Lett., vol. 26, no. 4, pp. 258-260, April 2005. [72] B. Razavi, Design of Integrated Circuits for Optical Communications, New York, NY: McGraw-Hill, 2003. [73] C. Cao and Kenneth K. O, “Millimeter-wave voltage-controlled oscillators in 0.13μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, pp. 1297-1304, June 2006. [74] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, pp. 1921-1930, Dec. 2001. [75] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1011, Dec. 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31971 | - |
dc.description.abstract | 隨著通訊系統的日益發展,高效能通訊電路的需求使得通訊電路面臨設計上和製程上的挑戰。本地振盪器正是通訊電路中一個重要的組成電路。在振盪器的數個主要特性之中,相位雜訊是一個很重要的效能評估。因為相位雜訊直接影響接收器的靈敏度和傳送器的訊號純度。所以,使用外接空腔共振器和覆晶技術來設計低相位雜訊的電壓控制振盪器將是本論文的重點。
本論文的章節安排如下。第一章主要為介紹背景、研究動機和一些文獻探討。第二章將說明電壓控制振盪器的基本理論和一些架構,被動元件的重要特性和相位雜訊也將會被討論。第三章將會先介紹空腔共振器和使用單埠量測品質因素的方法,接下來將會提出使用低溫共燒陶瓷所設計的空腔共振器和另一種使用覆晶技術所設計的空氣空腔共振器。第四章我們將以台灣積體電路製造公司CMOS 0.18 μm製程實現使用低溫共燒陶瓷空腔共振器的電壓控制振盪器和使用空氣空腔共振器的電壓控制振盪器。最後,我們會呈現電路模擬結果和量測方法。 | zh_TW |
dc.description.abstract | The rapid growth of communication markets has motivated the development of high performance transceivers. The local oscillator (LO) is an important building block of the transceiver. Among the several key figures of oscillator, phase noise is the most important criterion in oscillator because it directly determines the sensitivity of the receiver and the purity of the transmitter. Thus, the thesis will focus on the design of low phase noise voltage controlled oscillator (VCO) using off-chip cavity resonator and flip-chip technology.
The details of the thesis are organized as followed. In chapter 1, the background, research motivation and some literature review are introduced. In chapter 2, the basic principles of VCOs and several VCO architectures are illustrated. Also, the characteristics of some passive elements and phase noise will be discussed in this chapter. In chapter 3, we will introduce cavity resonator and one port reflection technique for Q measurement at first. Next, low-temperature co-fired ceramic (LTCC) cavity resonator and air cavity resonator will be proposed and flip-chip technology will be introduced. In chapter 4, two VCOs using LTCC cavity resonator and air cavity resonator are realized in TSMC CMOS 0.18 μm technology. Finally, the simulation result and measurement setup will be presented. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:26:24Z (GMT). No. of bitstreams: 1 ntu-95-R93943125-1.pdf: 2440857 bytes, checksum: 3dd48fbc65ff0257b014dbf3463fe1c8 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Background 1 1.2 Research Motivation 3 1.3 Literature Review 4 1.4 Chapter Overview 8 Chapter 2 Fundamentals and Architectures of VCO 9 2.1 Basic Principles of Oscillator 9 2.2 Fundamental Parameters of VCO 13 2.3 VCO Architectures 15 2.3.1 Ring Oscillator 15 2.3.2 Relaxation Oscillator 17 2.3.3 LC Oscillator 18 2.3.3.1 Inductor 19 2.3.3.2 Varactor 24 2.3.3.3 Quality Factor 27 2.3.3.4 Topologies 29 2.4 Phase Noise 31 2.4.1 Leeson’s Model 31 2.4.2 Hajimiri’s Model 34 Chapter 3 Design of High Quality Factor Cavity Resonators 41 3.1 Introduction 41 3.2 Rectangular Cavity Resonators 43 3.3 Quality Factor 45 3.3.1 Unloaded Quality Factor 46 3.3.2 One Port Reflection Technique for Q Measurement 48 3.4 Design of LTCC Cavity Resonator 53 3.4.1 Low Temperature Co-fired Ceramic (LTCC) 53 3.4.2 LTCC Cavity Resonator Design 58 3.5 Design of Air Cavity Resonator 64 3.5.1 Flip-chip Technology 64 3.5.2 Air Cavity Resonator Design 66 Chapter 4 Design and Implementation of Differential CMOS VCOs 75 4.1 Design Issues and Considerations 75 4.1.1 Topologies 75 4.1.2 MOS Transistor 79 4.1.3 Varactor 81 4.1.4 Tail Current Source 83 4.2 Design of CMOS VCO with LTCC Cavity Resonator 86 4.2.1 Circuit Design 86 4.2.2 Simulation Result 91 4.2.3 Measurement Setup 95 4.2.4 Conclusions 95 4.3 Design of CMOS VCO with Air Cavity Resonator 97 4.3.1 Circuit Design 97 4.3.2 Simulation Result 100 4.3.3 Measurement Setup 102 4.3.4 Conclusions 103 Chapter 5 Conclusions 105 References 107 | |
dc.language.iso | en | |
dc.title | 使用外接空腔共振器與覆晶技術設計18.5 GHz CMOS壓控振盪器 | zh_TW |
dc.title | Design of 18.5 GHz CMOS Voltage Controlled Oscillator Using Off-chip Cavity Resonator and Flip-chip Technology | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂良鴻(Liang-Hung Lu),張鴻埜(Hong-Yeh Chang),王琦學(Chi-Hsueh Wang) | |
dc.subject.keyword | 壓控振盪器,低溫共燒陶瓷,共振器,覆晶,相位雜訊, | zh_TW |
dc.subject.keyword | VCO,LTCC,resonator,flip-chip,phase noise, | en |
dc.relation.page | 112 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-29 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。