請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31867完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王文雄 | |
| dc.contributor.author | Han-Lung Tsai | en |
| dc.contributor.author | 蔡涵倫 | zh_TW |
| dc.date.accessioned | 2021-06-13T03:22:43Z | - |
| dc.date.available | 2006-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-28 | |
| dc.identifier.citation | 1. W.F. Smith, N.J. Grant, Met. Trans, Vol. 1(1970)p.979.
2. http://www.scandium.org/Sc-Al.html 3. Masaru Nakayama, Akira Furuta, Yasuhiro Miura, Mater. Tran. Vol.38, No. 10(1997)p.852. 4. B.A. Parker, Z.F. Zhou, P. Nolle, Mater. Sci. 30(1995)p.452. 5. V.G. Davydov, T.D. Rostova, V.V.Zakharov, Yu.A. Filatov, V.I. Yelagin, Mater. Sci. Eng. A280(2000)p.30. 6. Vladivoj Ocenasek, Margarita Slamova, Materials Characterization 4(2001)p.157. 7. V.I. Elagin, V.V. Zakharov, T.D. Rostova, Metal Science and Heat Treatment Vol.37, No.1-2(1995). 8. M. Kawazoe, T. Shibata, T. Mukai and K. Higashi, Scripta Mater., 36 (1997) p.699. 9. J. W. Edington, Metall. Trans. A, 13A (1982) p.703. 10. O.D.Sherby and J. Wadworth, Progress in Materials Science, Vol.33, No.3, p.1989. 11. Joanne L. Murray, Lawrence H. Bennett, Hugh Baker,“ American Society for Metals”,(1986). 12. 李榮顯 , “塑性加工學” ,三民,初版 民75. 13. T. G. Nieh, J. Wadsworth, and O. D. Sherby, in Superplasticity in metals and ceramics(1997). 14. R.E. Smallman, Modern Physical Metallurgy,(1985)p.493. 15. T.H. Courtney, Mechanical Behavior of Materials, (1990)p.502. 16. O. D. Sherby and J. Wadsworth, Prog. Mater. Sci., 33 (1989) p.169. 17. Kaiser Aluminum and Chemical Corporation, Center for Technology, Metallography Handbook for 5083Al, Pleasantom. CA. 1992, p.5. 18. M.V. Markushev, M. Yu. Murashikin, Mater. Sci. Eng. A367 (2004), p.234. 19. M.V. Markushev, C.C. Bampton, M.Yu. Murashkin, D.A. Hardwick, Mater. Sci. Eng. A234–236 (1997) p.927. 20. F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, C. Harris, Philos. Trans. R. Soc. Lond. Ser. A357 (1999) p.1663. 21. H. Hasegawa et al, Materials Science and Engineering A265(1999)p.188. 22. A. F. Whitehouse and T. W. Clyne, Acta Metall. Mater. 41(2003)p.1701. 23. M. Gupia, M. K. Surappa and S. Qin, Journal of Mater. Pro. Techno. , 67(1997)p.94. 24. Hyland, R. W., Metal. Trans. A, , 23(1992)p.1947. 25. Sano, N., Hasegawa, Y. and Hono, K., J. de Physique, C6(1987)p.337. 26. Drits, M. Y., Phys. Met. Metall., 57(1984), p.118. 27. N. Blake, M.A. Hopkins, J. Mater. Sci. 20 (1985) p.2861. 28. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Chapman and Hall, London,(1992), p.325. 29. Zhimin Yin, Qinglin Pan, Yonghong Zhang, Feng Jiang, Mater. Sci. Eng. A280(2000)p.154. 30. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R. Z. Valev, T.G. Langdon, J. Mater. Res. 11(1996)p.1881. 31. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) p.103. 32. F. Musin et al., Scripta Materialia 50 (2004) p.511. 33. A.R. Chezan, J.Th.M. De Hosson , Materials Science and Engineering A (2005). 34.O.D. Sherby, P.M. Burke, Prong. Master. Sci. 13(1967)p.325. 35. H. Oikawa, K. Sugawara, S. Karashima, Trans. JIM19(1978). 36. H. Jin, D.J. Lloyd, Scripta Materialia 50 (2004) p.1319. 37. Tellkamp VL, Melmed A, Lavernia EJ. Metall Mater Trans, 32A(2001)p.2335. 38. Witkins D, Lee Z, Rodrigues R, Nutt S, Lavernia E. Scripta Mater 49(2003)p.303. 39. O. D. Sherby and J. Wadsworth,“Deformation, Processing and Structure”, ed. G. Krauss, ASM, Metal Park, Ohio, (1984) p.355. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31867 | - |
| dc.description.abstract | 本實驗採用Al-6Mg-0.81Mn-0.4Sc-0.13Zr(wt%)合金來探討不同輥軋加工條件對於合金的低溫及高溫拉伸性質之影響。藉由熱差分析儀、微硬度及超塑性之測試,並配合掃瞄式及穿透式電子顯微鏡,來分析合金之退火性質、機械性質、超塑性及顯微組織的變化。
實驗結果顯示,此合金最佳的超塑性拉伸溫度為530℃,當真應變率固定為5x10-3/s時可獲得465%的伸長率。此合金經過冷輥軋處理後之主要變形機構為溶質拖曳潛變,其m值為0.27;而經過兩階段熱機處理後之主要變形機構則改變為晶界滑移,m值為0.48。由此可知,不同的加工製程會影響材料的高溫變形機制。此外,此合金的強化機構及微觀之變形特性,主要是由Al3(Sc,Zr)與差排滑移時之間所產生的交互作用所控制。經實驗可發現細小的Al3(Sc,Zr)除了有結構強化及整合強化,還具有Orowan強化機構。 | zh_TW |
| dc.description.abstract | This study was to investigate the influence of different rolling conditions, such as the two-step thermomechanical process(TMP) and cold rolling, on the tensile properties of Al-Mg-Sc alloy at room temperature and high temperature. The microstructure, annealing characteristics, mechanical properties and superplastic properties of this alloy were studied by using differential thermal analysis(DTA), microhardness measurements, SEM, TEM and tensile test .
The maximum tensile elongations found in Al-6Mg-0.81Mn -0.4Sc-0.13Zr(wt%) alloy at 530 ℃ is 465% which occurred under a strain rate of 5×10-3/s. The main deformation mechanism of this material which was produced by a treatment of TMP is grain boundary sliding (GBS) with a high strain rate sensitivity of m=0.48;the sample produced by cold rolling is mainly controlled by the solute-drag mechanism due to a smaller strain rate sensitivity of m= 0.25. It indicates that different rolling conditions affect the deformation mechanism of materials. It is noted that the strength mechanism and microstructure characteristics are controlled by Al3(Sc,Zr)precipitates which react with dislocations. The experimental results show that Al3(Sc,Zr)particles exhibit structure strengthening, coherent strengthening and the Orowan mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T03:22:43Z (GMT). No. of bitstreams: 1 ntu-95-R93527003-1.pdf: 5904596 bytes, checksum: b31877dbf64c26352a0a9c8e0d681855 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 第一章 前言…..…………………......………..…….......……….1
第二章文獻回顧.…………..…………..………………...………3 2.1 鋁合金強化機構……..……………….……….......………3 2.2 Sc 對鋁合金之影響.…………………..…...…....………3 2.2.1 Sc與鋁合金之反應……………......………………..3 2.2.2 其他合金元素對於Sc之影響…......……………….5 2.3 兩階段熱機之簡介…..………………………...……....…6 2.4 超塑性簡介…………..……………………......………….8 2.4.1 超塑性材料之基本性質..…………..……..……….8 2.4.2 超塑性之分類…………....…………..……..…...…10 2.5 高溫破壞型態………………….…...………...…………13 第三章 實驗方法…………………………....……....………….21 3.1 實驗材料…………..……..…….………………………..21 3.2 試片準備.……………………….……………..…..…….21 3.3 靜態退火實驗………………….……………..…………22 3.4 機械性質測試……….…......…...…….…………………23 3.4.1 常溫下拉伸試驗………..…....……………………22 3.4.2 硬度測試…………….…..…..…………………….22 3.4.3 超塑性拉伸試驗………..…........…...…………….22 3.5 時效硬化………………..…….……………..………….24 3.6 熱差分析……………………....………..………………24 3.7 顯微組織觀察與分析………..……………..…………..25 3.7.1掃描式電子顯微鏡的觀..…..………...…………..25 3.7.2 穿透式電子顯微鏡之觀察..…………...………….25 第四章 結果與討論….………...........…..……..….………….27 4.1 原材之顯微組織觀察…….………………..…………..27 4.2 熱差分析……………..…….…………..………………27 4.3 靜態退火實驗………………..……………..………….28 4.3.1 顯微組織………………..…………...……………28 4.3.2 晶粒尺寸……….…………………...…………….31 4.3.3 硬度值分析…………….……...………………….33 4.4 常溫下強度與延性……….……….......……………….34 4.5 破斷面觀察………………….………...……………….36 4.6 時效硬化……….…………………..………………….38 4.7 析出物分析……………………………...…………….40 4.8 高溫拉伸…………………..……………..……………41 4.8.1 最佳拉伸溫度……………….……..…………….41 4.8.2 真應力-應變曲線………………………………..42 4.8.3 顯微組織………………..………………………..46 第五章 結論…………………………………..……………...73 參考文獻……………………………………...………………75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超塑性 | zh_TW |
| dc.subject | 熱機處理 | zh_TW |
| dc.subject | 鋁鎂合金 | zh_TW |
| dc.subject | 鈧 | zh_TW |
| dc.subject | Al-Mg alloy | en |
| dc.subject | superplasticity | en |
| dc.subject | Sc | en |
| dc.subject | TMP | en |
| dc.title | 兩階段熱機處理對Al-Mg-Sc 合金機械性質之影響 | zh_TW |
| dc.title | The effect of two-step thermomechanical process on the machanical properties of Al-Mg-Sc alloy. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐永富,吳錫侃,童山,陳煌 | |
| dc.subject.keyword | 熱機處理,鋁鎂合金,鈧,超塑性, | zh_TW |
| dc.subject.keyword | TMP,Al-Mg alloy,Sc,superplasticity, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 5.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
