請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31830
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊燿州(Yao-Joe Joseph Yang) | |
dc.contributor.author | Wei-Yao Chang | en |
dc.contributor.author | 張為堯 | zh_TW |
dc.date.accessioned | 2021-06-13T03:21:31Z | - |
dc.date.available | 2007-08-03 | |
dc.date.copyright | 2006-08-03 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-28 | |
dc.identifier.citation | [1] F. Kraus, RFID Handbook, John Wiley & Sons, Inc. NJ, USA, 2nd ed., 2003.
[2] Shantanu K. Padhi, Gerhard F. Swiegers and Marek E. Bialkowski, “A Miniaturized Slot Ring Antenna for RFID Applications,” in Porc. 15th International Conference on Microwaves, Radar and Wireless Communications, Warszawa, Poland, May, 2004, pp. 318-321. [3] G. Marrocco, A. Fonte and F. Bardati, “Evolutionary Design of Miniaturized Meander-Line Antennas for RFID Applications,” in Proc. IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, June, 2002, pp. 362-365. [4] G. Marrcco, “Gain-Optimized Self-Resonant Meander Line Antennas for RFID Applications,” IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 2003, pp. 302-305. [5] M. Keskilammi and M. Kivikoski, “Using Text as A Meander Line for RFID Transponder Antennas,” IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 2004, pp. 372-374. [6] L. Ukkonen, L. Sydanheirno and M. Kiyikoski, “A Novel Tag Design Using Inverted-F Antenna for Radio Frequency Identification of Metallic Objects,” in Proc. Advances in Wired and Wireless Communication(2004 IEEE/Sarnoff Symposium on), Princeton, NU, United States, Apr, 2004, pp. 91-94. [7] L. Ukkonen, D. Engels, L. Sydanheimo and M. Kivikoski, “Planar Wire-Type Inverted-F RFID Tag Antenna Mountable on Metallic Objects,” in Tech. Dig. of IEEE Antennas and Propagation Society Symposium, Monterey, CA, United States, June, 2004, pp. 101-104. [8] M. Hirvonen, P. Pursula, K. Jaakkola and K. Laukkanen, “Planar Inverted-F Antenna for Radio Frequency Identification,” Electronics Letters, Vol. 40, No. 14, 2004, pp. 848-850. [9] L. Ukkonen, L. Sydanheimo and M. Kivikoski, “Patch Antenna with EBG Ground Plane and Two-Layer Substrate for Passive RFID of Metallic Objects,” in Tech. Dig. of IEEE Antennas and Propagation Society Symposium, Monterey, CA, United States, June, 2004, pp. 93-96. [10] T. C. Chau, B. A. Welt and W. R. Eisentadt, “Analysis and Characterization of Transponder Antenna for Radio Frequency Identification (RFID) Systems,” Packaging Technology and Science, Vol. 19, No. 1, 2006, pp. 33-44. [11] X. Qing and N. Yang, “A Folded Dipole Antenna for RFID,” in Tech. Dig. of IEEE Antennas and Propagation Society Symposium, Monterey, CA, United States, June, 2004, pp. 97-100. [12] P. R. Foster and R. A. Burberry, “Antenna Problems in RFID Systems,” in Tech. Dig. of IEE Colloquium, London, UK, Oct, 1999, pp. 3/1-3/5. [13] P. Raumonen, L. Sydanheimo, M. Keskilammi and M. Kivikoski, “Folded Dipole Antenna Near Metal Plate,” in Tech. Dig. of IEEE Antennas and Propagation Society Symposium, Columbus, OH, United States, June, 2003, pp. 848-851. [14] S. Basat, K. Lim, I. Kim, M. M. Tentzeris and J. Laskar, “Design and Development of A Miniaturized Embedded UHF RFID Tag for Automotive Tire Applications,” in Proc. IEEE Electronic Components and Technology (ECTC ‘05), Florida, USA, June, 2005, pp. 867-870. [15] J. Siden, P. Jonsson, T. Olsson and G. Wang, “Performance Degradation of RFID System Due To the Distortion in RFID Tag Antenna,” in Proc. IEEE 11th International Conference on Microwave and Telecommunication Technology (CriMico 2001), Sevastopol, Crimea, Ukraine, Nov, 2001, pp. 371-373. [16] Vladimir J. Lumelsky, Michael S. Shur and Sigurd Wagner, “Sensitive Skin,” IEEE Sensors Journal, Vol. 1, No. 1, 2001, pp. 41-51. [17] Danilo De Rossi and Enzo Pasquale Scilingo, “Skin-Like Sensor Arrays,” Interdepartment Research Center ”E. Piaggio”, University of Pisa, Italy, 2004. [18] R. Lazzarini, R. Magni and P. Dado, “A Tactile Array Sensor Layered in an Artificial Skin,” Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, 1995, pp. 114-119. [19] F. Castelli, “An Integrated Tactile-Thermal Robot Sensor with Capacitive Tactile Array,” IEEE Transactions on Industry Applications, Vol. 38, No. 1, 2002, pp. 85-90. [20] J. Engel, J. Chen and C. Liu, “Development of Polyimide Flexible Tactile Sensor Skin,” Journal of Micromechanics and Microengineering, Vol. 13, No. 3, 2003, pp. 359-366. [21] J. Engel, J. Chen, C. Liu, B. R. Flachsbart, J. C. Selby and M. A. Shannon, “Development of Polyimide-based Flexible Tactile Sensing Skin,” in Porc. Materials Research Society Symposium, Boston, MA, United States, Dec, 2002, pp. 165-170. [22] O. Kerpa, K. Weiss and H. Worn, “Development of a Flexible Tactile Sensor System for a Humanoid Robot,” in Porc. IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, United States, Oct, 2003, pp. 1-6. [23] S. L. Chang, H. K. Lee and E. Yoon, “Flip-Chip Assembly on Soft Polymer Substrate Using ACP for Integrating Readout Circuitry for Modular Expandable Tactile Sensor Array,” in Tech. Dig. of International Conference on Solid State Sensors and Actuators and Microsystems (TRANSDUCERS ‘05), Seoul, South Korea, Jun, 2005, pp. 1969-1972. [24] H. Kawaquchi, T. Someya, T. Sekitani and T. Sakuri, “Cut-and-Paste Customization of Organic FET Integrated Circuit and Its Application to Electronic Artifical Skin,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, 2005, pp. 177-185. [25] T. Someya, Y. Kato, S. Iba, Y. Noquchi, T. Sekitani, H. Kawaquchi and T. Sakurai, “Integration of Organic FETs with Organic Photodiodes for a Large Area, Flexible, and Lightweight Sheet Image Scanners,” IEEE Transactions on Electron Devices, Vol. 52, No. 11, 2005, pp. 2502-2511. [26] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi and T. Sakurai, “Conformable, Flexible, Large-area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 35, 2005, pp. 12321-12325. [27] J. S. Han, Z. Y. Tan, K. Sato and M. Shikida, “Thermal Characterization of Micro Heater Arrays on a Polyimide Film Substrate for Fingerprint Sensing Applications,” Journal of Micromechanics and Microengineering, Vol. 15, No. 2, 2005, pp. 282-289. [28] G. B. Lee and J. H. Wu, “A New Fabrication Process for a Flexible Skin with Temperature Sensor Array,” Journal of the Chinese Institute of Engineers, Vol. 25, No. 6, pp. 619-625. [29] J. Engel, J. Chen, X. Wang, Z. Fan, C. Liu and D. Jones, “Technology Development of Integrated Multi-Modal and Flexible Tactile Skin for Robotics Applications,” in Tech. Dig. of IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, United States, Oct, 2003, pp. 2359-2364. [30] J. Liu, Y. X. Zhou and Z. S. Deng, “Temperature Sensor Array System for Thermal Diagnostics on Human Disease,” in Porc. 23rd Engineering in Medicine and Biology Society, Istanbul, Turkey, Oct, 2001, pp. 3188-3191. [31] S. M. Sze, Semiconductor Sensors, John Wiley & Sons, Inc. NY, USA, 1994. [32] Y. Tikhov and J. H. Won, “Impedance-Matching Arrangement for Microwave Transponder Operating Over Plurality of Bent Installations of Antenna,” Electronics Letters, Vol. 40, No. 10, 2004, pp. 574-575. [33] S. Lopez-Buedo, J. Garrido, E. I. Boemo, “Dynamically Inserting, Operating, and Eliminating Thermal Sensors of FPGA-Based Systems,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 4, 2002, pp. 561-566. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31830 | - |
dc.description.abstract | 本研究以可撓性元件發展設計為訴求,以「射頻辨識系統(RFID)之標籤天線設計及製作」及「人工皮膚之溫度感測陣列」為應用,來做為論文主要重點與達成目標。射頻辨識標籤天線的部份,我們以Zeland IE3D來進行模擬及設計,以求得天線與晶片間是否達到阻抗匹配(Impedance matching),並取得最佳的天線增益。因此本研究改變偶極天線(Dipole)之尺寸參數,並設計四種於操作頻率在915MHz的標籤天線,並以MEMS製程將此四種天線利用銅膜製作出來後,以讀取距離來討論模擬與實際量測之間的關係。而可撓式溫度感測陣列部分,則在欲達成之規格規範之下,用軟性電路板技術(FPCB)與類比式溫度感測器(MAX6607)之結合後完成8×8陣列的製作,並利用類比式多工器及單晶片微處理器8051來進行掃描陣列的動作,其中此類比式多工器可當做解多工器使用,透過此特性,利用當做解多工器時做為「列」之掃描,提供驅動電壓給溫度感測器,另外則是當做多工器使用時做為「行」之掃描,接收晶片送出之訊號;最後並使用線路雕刻機將掃描電路做成一個整合型電路板,透過RS232傳輸陣列上的溫度資訊於PC上。此外,本研究亦發展了一套C++程式能將二維的溫度分佈清晰地用不同的顏色在電腦上顯示。 | zh_TW |
dc.description.abstract | In this work, we develop radio frequency identification (RFID) tags and temperature sensor arrays using flexible substrates. The RFID tag operated at 915 MHz. The tag antenna is simulated by the Zeland IE3D. The goal of the design is to match the tag impedance as well as to maximize the directive gain. Four different tag antenna designs are proposed and fabricated on Cu membranes using MEMS process. The design parameters are the patterns and the dimensions of antennas. Simulated results of the RFID tags are also verified with the measured results the effective reading distances. For the temperature sensor array case, we develop an 8×8 sensing array using FPCB and analog temperature sensors MAX6607. The scanning circuit, which includes a microprocessor (8051) and multiplexers, is developed to scan the sensor array as well as to transfer the scanned data to a personal computer using RS232. For row scanning, the multiplexer provides the driving power to sensors. For column scanning, another multiplexer is used to receive the data outputs of the sensor. Furthermore, we also develop a C++ code which presents the measured real-time temperature distributions as two-dimensional color-map images on a computer monitor. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T03:21:31Z (GMT). No. of bitstreams: 1 ntu-95-R93522701-1.pdf: 1754671 bytes, checksum: 32e31baf26f57e36222022f35197f052 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 文獻回顧 1 1.2.1 射頻辨識系統及天線設計技術 1 1.2.2 人工皮膚之溫度感測器陣列技術 5 1.3 論文架構 7 第二章 理論分析 8 2.1 天線理論 8 2.1.1 天線增益與方向效應 (Gain and Direction Effect) 8 2.1.2 阻抗匹配 (Impedance Matching) 10 2.2 溫度感測器理論與技術 11 2.2.1 熱轉移 (Heat Transfer) 12 2.2.1.1 熱傳導 (Conduction) 12 2.2.1.2 熱輻射 (Radiation) 14 2.2.2 熱結構 (Thermal Structure) 15 2.2.3 熱感測元件 (Thermal-sensing Elements) 18 2.2.3.1 電阻 (Resistors) 18 2.2.3.2 熱電偶 (Thermocouples) 19 2.2.3.3 電晶體 (Transistors) 20 2.2.4 感測器選用 21 第三章 RFID標籤天線模擬與製程 22 3.1 偶極天線改良設計 22 3.2 標籤天線設計流程 22 3.3 天線模擬 23 3.3.1 電磁模擬標籤天線之目的 23 3.3.2使用電磁模擬軟體設計標籤天線 24 3.3.2.1 模擬流程 24 3.3.2.2 設計變數 24 3.3.2.3 材料層設定 25 3.3.2.4 埠口設定 27 3.3.2.5 掃頻取得天線阻抗及增益 27 3.4 標籤天線製程 30 3.4.1 製程流程 30 3.4.2 曝光顯影蝕刻成型 31 3.4.3 連結標籤晶片 33 3.5 簡易量測與結果討論 34 第四章 可撓性溫度感測陣列設計 36 4.1 溫度陣列規格限制及感測器篩選 36 4.2 溫度感測器MAX6607 38 4.3 可撓式溫度感測器陣列 39 4.4 可撓式8×8溫度感測陣列掃描方法 40 4.4.1 類比轉數位 40 4.4.2 多工器之列行掃描 40 4.5 可撓式8×8溫度感測陣列顯示介面及掃描結果 42 第五章 結論與未來展望 66 5.1 結論-RFID標籤天線製作 66 5.2 結論-人工皮膚之可撓式溫度感測器陣列製作 66 5.3 未來展望 67 參考文獻 68 | |
dc.language.iso | zh-TW | |
dc.title | 可撓式基材之元件發展:以射頻辨識標籤及溫度感測陣列為例 | zh_TW |
dc.title | Development of Devices Using Flexible Substrates: RFID Tags and Temperature Sensing Arrays | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施文彬(Wen-Pin Shih),張復瑜(Fu-Yu Chang) | |
dc.subject.keyword | 可撓式,射頻辨識,標籤,人工皮膚,溫度感測陣列, | zh_TW |
dc.subject.keyword | Flexible,RFID,Tag,Artificial skin,Temperature sensor array, | en |
dc.relation.page | 72 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。