請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31359
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顧鈞豪 | |
dc.contributor.author | Chau-Jie Zhan | en |
dc.contributor.author | 詹朝傑 | zh_TW |
dc.date.accessioned | 2021-06-13T02:45:19Z | - |
dc.date.available | 2006-10-25 | |
dc.date.copyright | 2006-10-25 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-10-18 | |
dc.identifier.citation | 1. Y. W. Kim, JOM 46 (1994) 30.
2. C. Koeppe, A. Bartels, J. Seeger and H. Mecking, Metall. Trans. 24A (1993) 1795. 3. F. Appel, Mater. Sci. Eng. A317 (2001) 115. 4. D. Zhang, G. Dehm and H. Clemens, Z. Metallkd 91 (2000) 950. 5. W. J. Zhang, G. L. Chen, Y. D. Wang and Z. Q. Sun, Scripta Metall. Mater. 28 (1993) 1113. 6. T. Tetsui, Intermetallics 10 (2002) 239. 7. Z. C. Liu, J. P. Lin, S. J. Li and G. L. Chen, Intermetallics 10 (2002) 653. 8. W. J. Zhang, G. L. Chen, F. Appel, T. G. Nieh and S. C. Deevi, Mater. Sci. Eng. A315 (2001) 250. 9. F. Appel, J. D. H. Paul, U. Frobel and U. Lorenz, Metall. Trans. 34A (2003) 2149. 10. C. H. Ward, Intl. Mater. Rev., 38 (1993) 79. 11. S. Djanarthany, J.-C. Viala and J. Bouix, Mater. Chem. and Phy. 72 (2001) 301. 12. D. G. Konitzer, I. P. Jones and H. L. Fraser, Scripta Metall., 20 (1986) 265. 13. W. J. Zhang, S. C. Deevi and G. L. Chen, Intermetallics 10 (2002) 403. 14. 楊錦添,國立臺灣大學材料科學與工程學研究所博士論文,2003,第30頁。 15. L. A. Bendersky, W. J. Boettinger, B. P. Burton and F. S. Biancaniello, Acta Metall. Mater., 38 (1990) 931. 16. L. A. Bendersky, W. J. Boettinger, F. S. Biancaniello, Mater. Sci. Eng. A152 (1992) 41. 17. Y. W. Kim, J. Met. 43 (1989) 24. 18. Y. W. Kim, Mater. Sci. Eng. a 192/193 (1995) 519. 19. Y. W. Kim and F. H. Froes, in; “High Temperature Aluminides and Intermetallics” , eds. S. H. Wang, C. T. Liu, D. P. Pope and J. O. Stiegler, (The Minerals, Metals & Materials Society, 1990) 465. 20. C. T. Liu, J. H. Schneibel, P. J. Maziasz, J. L. Wright and D. S. Easton, Intermetallics, 4 (1996) 429. 21. P. J. Maziasz and C. T. Liu, Metall. Mater. Trans., 29A (1998) 105. 22. T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi and M. Takeyama, Intermetallics, 13 (2005) 971. 23. W. J. Zhang, G. L. Chen, Y. D. Wang and Z. Q. Sun, Scripta Metall. Mater., 28 (1993) 1113. 24. J. T. Kandra and E. W. Lee, Metall. Mater, Trans., 25A (1994) 1667. 25. J. D. H. Paul, F. Appel and R. Wagner, Acta Mater., 46 (1998) 1075. 26. W. J. Zhang, Z. C. Liu, G. L. Chen and Y.W. Kim, Mater Sci Eng A271 (1999) 416. 27. W. J. Zhang, S. C. Deevi and G. L. Chen, Intermetallics 10 (2002) 403. 28. Z.C. Liu, J.P. Lin, S.J. Li and G.L. Chen, Intermetallics 10 (2002) 653. 29. W.J. Zhang and F. Appel, Mater Sci Eng A329 (2002) 649. 30. R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma and K. Ishida, Intermetallics 8 (2000) 855. 31. M. Yamaguchi, H. Inui, in: R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, M. V. Nathal(Eds.), Structural Intermetallics, TMS, Warrendale, PA, 1993, p. 127. 32. M. Grange, J. L. Raviart and M. Thomas, Metall. Mater, Trans., 35A (2004) 2087. 33. H. N. Lee, D. R. Johnson, H. Inui, M. H. Oh, D. M. Wee and M. Yamaguchi, Intermetallics 10 (2002) 841. 34. F. Appel, J. D. H. Paul, M. Oehring, U. Frobel and U. Lorenz, Metall. Mater, Trans., 34A (2003) 2149. 35. H. S. Cho, S. W. Nam, J. H. Yum and D. M. Wee, Mater Sci Eng A262 (1999) 129. 36. T. Noda, M. Okabe, S. Isobe and M. Sayashi, Mater Sci Eng A192/193 (1995) 774. 37. T. Kawabata, T. Abumiya and O. Izumi, Acta Metall. Mater. 40 (1992) 2557. 38. B. K. Kad and H. L. fraser, Phil. Mag. Letter 70 (1994) 211. 39. S. M. L. Sastry, T. C. Peng and L. P. Beckerman, Mater, Trans., 15A (1984) 1465. 40. F. S. Sun, C. X. Cao, S. E. Kim, Y. T. Lee and M. G. Yan, Scripta Metall. Mater., 44 (2001) 2775 41. Y. Songbo, H. Boym and Y. Zhimin, Mater Sci Eng A280 (2000) 204. 42. J. C. Woo, S. K. Varma and R. N. Mahapatra, Mater, Trans., 34A (2003) 2263. 43. S. Taniguchi and T. Shibata, Intermetallics 4 (1996) S85. 44. K. Hauffe, Prog. Metal Phys., 4 (1953) 71. 45. C. Wagner, Z. Elektrochem., 63 (1959) 772. 46. K. Maki, M. Shioda, M. Sayashi, T. Shimiz and S. Isobe, Mater Sci Eng A153 (1992) 591. 47. D. W. McKee and S. C. Huang, Corros. Sci., 33 (1993) 1899. 48. Y. Shida and H. Anada, J. Japan Inst. Metal, 58 (1994) 754. 49. H. Anada and Y. Shida, J. Japan Inst. Metal, 58 (1994) 1036. 50. V. A. C. Haanappel, H. Clemens and M. F. Stroosnijder, Intermetallics 10 (2002) 293. 51. M. Yoshihara and K. Miura, Intermetallics 3 (1995) 357. 52. H. Anada and Y. Shida, J. Japan Inst. Metal, 58 (1994) 746. 53. D. B. Lee and S. W. Woo, Intermetallics 13 (2005) 169. 54. Y. Wu, K. Hagihara and Y. Umakoshi, Intermetallics 12 (2004) 519. 55. Y. Wu, K. Hagihara and Y. Umakoshi, Intermetallics 13 (2005) 879. 56. L. Singheiser, L. Niewolak, U. Flesch, V. Shemet and W. J. Quadakkers, Metall. Mater, Trans., 34A (2003) 2247. 57. L. Niewolak, V. Shemet, C. Thomas, P. Lersch, L. Singheiser and W. J. Quadakkers, Intermetallics 12 (2004) 1387. 58. B. Y. Huang, Y. H. He and J. N. Wang, Intermetallics 7 (1999) 881. 59. S. Taniguchi, T. Shibata and S. Sakon, Mater Sci Eng A198 (1995) 85. 60. 于作浩,國立臺灣大學材料科學與工程學研究所博士論文,1998,第40頁。 61. G. Shao, P. Tsakiropoulos and A. P. Miodownik, Intermetallics 3 (1995) 315. 62. Z. X. Li and C. C. Cao, Intermetallics 13 (2005) 251. 63. M. Takeyama, Y. Ohmura, M. Kikuchi and T. Matsuo, Intermetallics 6 (1998) 643. 64. T. S. Rong, D. N. Horspool, M. Aindow, Intermetallics 10 (2002) 13. 65. A. F. Norman, P. B. Prangnell and R. S. McEWEN, Acta Metall. Mater., 46 (1998) 5715. 66. G. M. Novotny, A. J. Ardell, Mater Sci Eng A318 (2001) 144. 67. S. M. L. Sastry, P. J. Meschter and J. E. O’neal, Metall. Mater, Trans., 15A (1984) 1451. 68. W. Li, B. Inkson, Z. Horita and K. Xia, Intermetallics 8 (2000) 519. 69. J. G. Wang and T. G. Nieh, Intermetallics 8 (2000) 737. 70. W. J. Zhang and S. C. Deevi, Mater Sci Eng A362 (2003) 280. 71. X. Wu, D. Song and K. Xia, Mater Sci Eng A329-331 (2002) 821. 72. K. Xia, X. Wu and J. Zhang, Intermetallics 11 (2003) 325. 73. A. Zeller, F. Dettenwanger and M. Schütze, Intermetallics 10 (2002) 33. 74. M. H. Oh, H. Inui, M. Misaki and M. Yamaguchi, Acta Metall. Mater., 41 (1993) 1939. 75. M. Lu and K. J. Hemker, Acta Metall. Mater., 45 (1997) 3573. 76. K. J. Hemker and W. D. Nix, Acta Metall. Mater., 39 (1991) 1901. 77. M. Sujata, D. H. Sastry and C. Ramachandra, Intermetallics 12 (2004) 691. 78. S. Bystrzanowski, A. Bartels, H. Clemens, R. Gerling, F. P. Schimansky, G. Dehm and H. Kestler, Intermetallics 13 (2005) 515. 79. 周家平,國立臺灣大學材料科學與工程學研究所碩士論文,1996,第69頁。 80. 張明智,國立臺灣大學材料科學與工程學研究所碩士論文,1997,第91頁。 81. R. A. Robie, B. S. Hemingway and J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15K and at Higher Temperature, U.S. Govt. Print. Off., Washington, 1978. 82. S. Taniguchi, M. Yoshihara and K. Fujita, Japan Inst. Metals 45 (2004) 1693. 83. S. Becker, A. Rahmel, M. Schorr and M. Schutze, Oxid. Met., 38 (1992) 425. 84. B. G. Kim, G. M. Kim and C. J. Kim, Scripta Metall. Mater. 33 (1995) 1117. 85. G. Chen, Z. Sun and X. Zhou, Mater Sci Eng A153 (1992) 597. 86. 張孝慈,國立臺灣大學材料科學與工程學研究所碩士論文,2003,第12頁。 87. P. Perez, V. A. C. Haanappel and M. F. Stroosnijder, Mater Sci Eng A284 (2000) 126. 88. T. K. Roy, R. Balasubramaniam and A. Ghosh, Metall. Mater, Trans., 27A (1996) 4003. 89. 于作浩,國立臺灣大學材料科學與工程學研究所碩士論文,1993,第48頁。 90. S. K. Varma, A. Chan and R. N. Mahapatra, Oxid. Met., 55 (2001) 423. 91. M. Eckert, D. Kath and K. Hilpert, Metall. Mater, Trans., 30A (1999) 1315. 92. M. Yoshihra and Y. -W. Kim, Intermetallics 13 (2005) 952. 93. P. Perez, V. A. C. Haanappel and M. F. Stroosnijder, Oxid. Met., 53 (200) 481. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31359 | - |
dc.description.abstract | 本文主要研究高鈮含量鈦鋁介金屬合金Ti-40Al-xNb(x=10,12,15,16)的顯微結構、潛變性質及氧化行為等性質。鑄造狀態的Ti-40Al-10Nb合金,其顯微結構為灰色長針狀Widamanstätten組織密集的束狀交錯分佈於B2基地。而Ti-40Al-xNb(x=12,15,16)合金,則是初析β樹狀晶及樹狀晶間高密度的羽毛狀γ相所組成。均質化熱處理後,Ti-40Al-10Nb合金的顯微結構除了灰色針狀Widamanstätten組織,尚有黑色顆粒狀的γ相析出;Ti-40Al-12Nb合金及Ti-40Al-15Nb合金的顯微結構則有許多不同型態的γ相分佈於B2基地;而Ti-40Al-16Nb合金另有塊狀白色σ相生成及少量深灰色α2相存在Ti-40Al-16Nb-0.4wt% X(X=Sc or Mm)合金的鑄造顯微結構,乃是有矩形或花瓣狀的富Sc氧化析出物及條狀或圓顆粒狀的La2O3氧化物存在於初析β樹狀晶間,而上述的氧化物的析出乃是熔煉時內部氧化導致。而均質化後,Ti-40Al-16Nb-0.4wt% X(X=Sc or Mm)合金基地內有許多次微米尺寸的顆粒狀氧化物產生,此乃固溶於基地中的Sc或Mm於長時間熱處理後再經內氧化反應而析出。Ti-40Al-xNb(x=15,16)合金的潛變變形主要由三期潛變主導,而基地B2相為潛變變形時主要的變形相。應力指數4.5,表示差排爬移為Ti-40Al-xNb(x=15,16)合金的潛變變形機構。Ti-40Al-xNb(x=15,16)合金潛變曲線並未有穩態潛變區域存在,此乃是基地B2相於潛變變形時並無形成穩定差排結構所導致。而Ti-40Al-xNb(x=15,16)合金的潛變活化能約為365 KJ/mole,此活化能應與B2相的晶格活化能有關。Ti-40Al-xNb合金的破裂型態主要以穿晶劈裂破斷為主,而Ti-40Al-16Nb合金則因有脆性σ相存在,所以其抗潛變性比Ti-40Al-15Nb合金差。Ti-40Al-16Nb-0.4wt% X(X=Sc or Mm)合金於抗潛變性上的強化效應,乃來自於微細析出物對差排運動的阻礙,而增加其潛變壽命。Ti-40Al-xNb(x=15,16)合金及Ti-40Al-16Nb-0.4wt% X(X=Sc or Mm)合金的三期潛變破斷,主要是由於顯微結構的不穩定所導致。Ti-40Al-xNb合金的800℃恆溫氧化測試結果顯示,各合金的抗氧化性差異主要來自於顯微結構的不同,α2相的抗氧化性較γ相及基地B2相差。在900℃時,鈮含量的多寡影響抗氧化性的效應較為顯著,而鈮元素對氧化行為的影響,在於促進Al2O3氧化物的生成。經氧化測試後的Ti-40Al-15Nb合金,其表層為一富Al2O3的氧化層。但1000℃的氧化測試則顯示,Ti-40Al-xNb合金的氧化層產生嚴重的剝落,此表示在1000℃測試溫度下,Ti-40Al-xNb合金已失去抗氧化性。 | zh_TW |
dc.description.abstract | This study aims to investigate the microstructure, creep behavior and high temperature oxidation behavior of novel high niobium-containing Ti-40Al-xNb (x=10,12,15,16) intermetallic alloy. The microstructure of the as-cast Ti-40Al-10Nb alloy consists of dense Widamanstätten α2 laths in the B2 matrix. The microstructure of the as-cast Ti-40Al-xNb (x=12,15,16) alloy is composed of the primary β dendrites and dense γ phases with various morphologies, such as lathy, feathered and irregular shapes. Following heat treatment, the microstructure of the heat-treated Ti-40Al-10Nb alloy resembles that of the as-cast Ti-40Al-10Nb alloy. The homogenized Ti-40Al-12Nb alloy and Ti-40Al-15Nb alloy have a two-phase microstructure of B2+γ, while the homogenized Ti-40Al-16Nb alloy has a four-phase microstructure of B2+γ+α+σ.The microstructure of the as-cast Ti-40Al-16Nb-0.4wt% X (X=Sc or Mm) alloy contains many Sc-rich oxides with cubic or cauliflower-shapes and La2O3 oxides having strip-like or spherical shape in the inter-dendrite region. The formations of these precipitates are caused by the internal oxidation during solidification. After homogenization, numerous fine particles with sub-micrometer scale are present in the Ti-40Al-16Nb-0.4wt% X (X=Sc or Mm) alloy. This is due to the fact that during long-term heat treatment at high temperature, Sc or Mm elements, initially dissolving in the as-cast alloy, may react with oxygen atoms by internal oxidation and reproduce fine-scale particles. The creep responses of the Ti-40Al-xNb (x=15,16) alloy are strongly correlated with tertiary creep behavior. The deformation of creep converges mainly at the B2 phase. A stress exponent of 4.5 estimated indicates that the mechanism of controlling creep behavior is dislocation climb. The creep curve of the Ti-40Al-xNb (x=15,16) alloy does not exhibit a steady-state region, resulting from the absence of the subgrain structures of dislocations in the alloys during secondary creep. The creep activation energy of the Ti-40Al-xNb (x=15,16) alloy is about 365 KJ/mole. The calculated values of activation energy for the alloys are quite close to the activation energy of Ti self-diffusion in the β phase (~353KJ/mole). The creep fracture of the alloys is dominated by cleavage fracture over the entire fracture surface. The brittleness of the σ phase causes most of the cracks to run through it immediately, indicating no resistance to their propagation. Therefore, the creep life of the Ti-40Al-16Nb alloy is shorter than that of the Ti-40Al-15Nb alloy. The strengthening effects of minor elements added (Sc or Mm) are apparent on the properties of tertiary creep rate and rupture life of the alloys. The fine particle formed after homogenization is an effective obstacle to the motion of dislocations, further increasing the creep fracture life of the alloys. The fracture of the Ti-40Al-xNb (x=15,16) and Ti-40Al-16Nb-0.4wt% X (X=Sc or Mm) alloy during tertiary creep is caused by microstructural instabilities. The results of the isothermal oxidation tested at the temperature of 800℃ for the Ti-40Al-xNb (x=10,12,15,16) alloys reveal that the difference among the oxidation resistances of these four alloys arise from their various microstructures. The oxidation resistance of α2 is inferior to that of γ. At a higher temperature of 900℃, the effect of Nb content on the oxidation resistance of the Ti-40Al-xNb (x=10,12,15,16) alloy becomes more pronounced. For the Ti-40Al-xNb (x=10,12,15,16) alloys, the increased Nb content promotes the formation of Al2O3 oxides. Therefore, the Ti-40Al-15Nb alloy has the strongest oxidation resistance among these four tested alloys. But at 1000℃, the Ti-40Al-xNb (x=10,12,15,16) alloys show a severe scale spallation, indicating that these alloys could no more resist the oxidation and lost their surface protection at the temperature. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:45:19Z (GMT). No. of bitstreams: 1 ntu-95-D91527003-1.pdf: 7280729 bytes, checksum: 6ad912fbc13dbdcf8e4cccf317833a6c (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目 錄 VII
圖目錄 IX 表目錄 XIV 第一章 前言 1 第二章 文獻回顧 3 2.1 TiAl介金屬合金的顯微結構及機械性質 3 2.2 TiAl-Nb合金 8 2.3 鈦鋁合金的強化機構 9 2.3.1 固溶強化 9 2.3.2 析出硬化 10 2.4 鈦鋁合金的高溫氧化 11 2.4.1 氧化行為 11 2.4.2合金元素添加效應 14 第三章 實驗方法及步驟 28 3.1 合金配製與熔煉 28 3.2 熱處理 28 3.3 材料測試與分析 28 3.3.1 顯微結構觀察 29 3.3.2 電子微探儀(EPMA) 29 3.3.3 穿透式電子顯微鏡 29 3.3.4 潛變試驗 30 3.3.5 高溫氧化試驗 30 第四章 Ti-40Al-xNb(x=10,12,15,16)合金之顯微結構 31 4.1 鑄造Ti-40Al-xNb合金之顯微結構 31 4.2 均質化Ti-40Al-xNb合金之顯微結構 34 4.3 Ti-40Al-16Nb合金添加鈧或富鑭混合稀土元素之顯微 結構 36 4.3.1 Ti-40Al-16Nb-0.4wt% Sc合金之顯微結構 36 4.3.2 Ti-40Al-16Nb-0.4wt% La rich Misch metal合金之 顯微結構 38 第五章 Ti-40Al-xNb(x=15,16)合金及Ti-40Al-16Nb-0.4wt% X (X=Sc or La-rich Misch metal)合金之潛變行為 47 5.1 潛變測試合金之顯微結構 47 5.2 Ti-40Al-xNb(x=15,16)合金及Ti-40Al-16Nb-0.4wt% X(X=Sc or Mm)合金之潛變曲線及其機構 47 5.3 Ti-40Al-xNb(x=15,16)合金及Ti-40Al-16Nb-0.4wt% X (X=Sc or Mm)合金的潛變破斷行為 54 第六章 Ti-40Al-xNb(x=10,12,15,16)合金之高溫氧化性質 78 6.1 Ti-40Al-xNb合金之恆溫氧化性質 78 6.2 Ti-40Al-xNb合金之恆溫氧化產物分析 81 第七章 結論 119 未來建議研究方向 122 參考文獻 123 個人著作 128 | |
dc.language.iso | zh-TW | |
dc.title | 鈦鋁介金屬合金(TiAl-Nb)顯微結構與高溫性質研究 | zh_TW |
dc.title | The microstructural analysis and high-temperature properties of TiAl-Nb alloy | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 莊東漢,林招松,楊智富,吳翼貽 | |
dc.subject.keyword | 鈦鋁-鈮介金屬合金,顯微結構,潛變,恆溫氧化, | zh_TW |
dc.subject.keyword | titanium-aluminum-niobium intermetallic alloys,microstructure,creep,isothermal oxidation, | en |
dc.relation.page | 129 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-10-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 7.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。