Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30442
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義(An-I Yeh)
dc.contributor.authorJia-Liang Wuen
dc.contributor.author吳佳亮zh_TW
dc.date.accessioned2021-06-13T02:03:54Z-
dc.date.available2009-07-20
dc.date.copyright2007-07-20
dc.date.issued2007
dc.date.submitted2007-07-03
dc.identifier.citation大澤俊彥。1996。ゴス種子に含まれゐ配糖體の研究。食の科學。26-32。
王秋森、陳時欣。2005。氣膠技術學。新文京開發出版公司。台北縣中和市。
王鉦源。2002。以化學還原法製備奈米級銀鈀微粉。國立成功大學 化學工程研究所,碩士論文。台南市。
尹邦躍。2003。奈米時代。五南圖書。台北市。
李秀、賴滋漢、柯文慶。2004。食品分析與檢驗。富林出版社。台北市。
呂維明、戴怡德。1998。粉粒體粒徑量測技術。高立圖書有限公司。台北市。
並木滿夫。1996。ゴスの機能性研究の新展開。食の科學。18-25。
林麗娟,田大昌。2002。微結構分析技術之介紹。工業材料雜誌。181:73-79。
徐永鑫。2001。芝麻粕中 lignans及lignan glycosides之抗氧化性探討。國立台灣大學 食品科技研究所,博士論文。台北市。
徐敬添。2001。濕式珠磨分散技術在奈米機能性產品之應用。產業奈米技術應用資訊園地─奈米粉體專刊。1:86-99。
馬遠榮。2002。奈米科技。商周出版。台北市。
陳時欣。2006。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究 。國立台灣大學 食品科技研究所,碩士論文。台北市。
莊允中。2003。奈米表面技術發展趨勢。金屬工業研究發展中心出版。高雄市。
莊萬發。1995。超微粒子理論應用。復漢出版。台南市。
康碩芬。2001。芝麻粕 lignan glycosides 粗萃物對高果糖餵飼大白鼠胰島素阻抗的影響。國立台灣大學 食品科技研究所,碩士論文。台北市。
楊永本。1986。芝麻之加工與利用。食品工業。18(10):45-46。
趙明煜。2004。奈米纖維製備方法之研究。國立台灣大學 食品科技研究所,碩士論文。台北市。
柳克強,翁政輝,魏鴻文,張家豪,李安平,寇崇善,吳敏文,曾錦清,蔡文發,
鄭國川。2006。電漿源原理與應用之介紹。物理雙月刊。28(2): 440-451。
Aitken RJ, Creely KS, Tran CL. 2004. Nanoparticles: an occupational hygiene review. Health and Safety Excutive Books, Sudbury, UK.
http://www.hse.gov.uk/research/rrpdf//rr274.pdf. Accessed on Jan. 19, 2006.
Akimoto K, Kitagawa Y, Akamatsu T, Hirose N, Sugano M, Shimizu S, Yamada H. 1993. Protective effects of sesamin against liver damage caused by alcohol or carbon tetrachloride in rodents. Annual Nutrition Metabolism 37: 218-224.
Awschalom DD, DiVincenzo DP. 1995. Complex dynamics of mesoscopic magnets. Physics Today 48(4): 43-48.
Brus L. 1991. Quantum crystallites and nonlinear optics. Applied Physics 53(6): 465-474.
Bradford MM. 1976. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254.
Eastwood M, Kritchevsky D. 2005. Dietary fiber: how did we get where we are? Annual Review of Nutrition 25: 1-8.
Fadhel HB, Frances C. 2001. Wet batch grinding of alumina hydrate in a stirred bead mill. Powder Technology 119(2-3): 257-268.
Fenlder JH. 1987. Atomic and molecular clusters in membrane mimetic chemistry. Chemical Reviews 87(5): 877-899.
Fukuda Y and Namiki M. 1988. Recent studies on sesame seed and oil. Nippon Shokuhin Kogyo Gakkaishi 35: 552-562.
Hayashi C. 1987. Ultrafine particles. Physics Today 40(12): 44-51.
He MZ, Wang YM, Forssberg E. 2006. Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technology 161(1): 10-21.
Hirata F, Fujita K, Ishikura Y, Hosoda K, Ishikawa T, Nakamura H. 1996. Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis 122(1): 135-136.
Hirose N, Doi F, Ueki T, Akazawa K, Chijjiwa K, Sugano M, Akimoto K, Shimizu S, Yamada H. 1992. Suppressive effect of sesamin against 7, 12- dimethylbenz[a] -anthracene induced rat mammary carcinogenesis. Anticancer Research 1259-1266.
Jackson ML. 1958. Methods of soil analysis. Part 2 chemical and microbiological properties (2nd ed) 1: 7-8, Madison, editor by Page AL.
Kamal-Eldin A, Pettersson D, Appelqvist LA. 1995. Sesamin (a compound from sesame oil) increases tocopherol levels in rats fed ad libitum. Lipids 30: 499-505.
Kang MH, Kawai Y, Naito M, Osawa T. 1999. Dietary defatted sesame flour decreases susceptibility to oxidative stress in hypercholesterolemic rabbits. Journal of Nutrition 129(10): 1885-1890.
Kang MH, Naito M, Sakai K, Koji U, Osawa T. 2000. Mode of action of sesame lignans in protecting low-density lipoprotein against oxidative damage in vitro. Life Sciences 66(2): 161-171.
Kang MH, Naito M, Tsujihara N, Osawa T. 1998. Sesamolin inhibits lipid perooxidation in rat liver and kidney. Journal of Nutrition 128(6): 1018-1022.
Kastner MA. 1993. Artificial atoms. Physics Today 46(1): 24-31.
Katsuzaki H, Kawasumi M, Kawakishi S, Osawa T. 1992. Structure of novel antioxidative lignan glucosides isolated from sesame seed. Bioscience, Biotechnology, and Biochemistry 56(12): 2087-2088.
Kim KS, Park SH, Choung MG. 2006. Nondestructive determination of lignans and lignan glycosides in sesame seeds by near infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry 54(13): 4544-4550.
Kobayashi S, Watanabe J, Kawabata J, Fukushi E, Shinmoto H. 2004. A novel method for producing a foodstuff from defatted black sesame seed that inhibits allergen absorption. Bioscience, Biotechnology, and Biochemistry 68(2): 300-305.
Kuriyama K and Murai T. 1993. Effect of cellulose on hydrolysis of lignan glycosides in sesame seed by β-glucosidase. Nippon Nõgeikagaku Kaishi 67: 1701-1705.
Kuriyama K and Murai T. 1996. Inhibition effects of lignan glucosides on lipid peroxidation. Nippon Nõgeikagaku Kaishi 70: 161-167.
Lee J, Choe E. 2006. Extraction of lignan compounds from roasted sesame oil and their effects on the autoxidation of methyl linoleate. Journal of Food Science 71(7): C430-C436.
Lewis LN. 1993. Chemical catalyst by colloids and clusters. Chemical Reviews 93(8): 2693-2730.
Lin J, Zhang SM, Cook NR, Rexrode KM, Liu S, Manson JE, Lee IM, Buring JE. 2005. Dietary intakes of fruit, vegetables, and fiber, and risk of colorectal cancer in a prospective cohort of women (US). Cancer Causes Control 16: 225-233.
Linnert T, Mulvaney P, Henglein A. 1993. Surface Chemistry of Colloidal Silver: Surface Plasmon Damping by Chemisorbed I-, SH-, and C6H5S-. The Journal of Physical Chemistry 97(3): 679-682.
Moazzami AA, Andersson RE, Kamal-Eldin A. 2006. HPLC analysis of sesaminol glucosides in sesame seeds. Journal of Agricultural and Food Chemistry 54(3): 633-638.
Moraru CI, Panchapakesan CP, huang Q, Takhistov P, Liu S, Kokini JL. 2003. Nanotechnology: A new frontier in food science. Food Technology 57(12): 24-29.
Muller RH, Jacobs C, Kayser O. 2001. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews 47(1): 3-19.
Nakano D, Ogura K, Miyakoshi M, Ishii F, Kawanishi H, Kurumazuka D, Kwak CJ, Ikemura K, Takaoka M, Moriguchi S, Iino T, Kusumoto A, Asami S, Shibata H, Kiso Y, Matsumura Y. 2006. Antihypertensive effect of angiotensinΙ-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry 70(5): 1118-1126.
Namiki M. 1995. The chemistry and physiological functions of sesame. Food Reviews International 11(2): 281-329.
Ochi S, Mori T, Horikawa M, Mikami H, Sato M. 1995. Angiotensin converting enzyme inhibitory peptides from sesame protein. Nihon Nougeikagakukai Taikai Koen Yoshi-shu (in Japanese), p. 142.
Osawa T, Yoshida A, Kawakishi S, Yamashita K, Ochi H. 1995. Protective role of dietary antioxidants in oxidative stress. In: Oxidative Stress and Aging (Cutler, R. G. and Packer L., eds.), pp. 367-377. Molecular and Cell Biology Updates, Basel, Switzerland.
Provder T. 1991. Particle Size Distribution Π.- Assessment and Characterization. American Chemical Society, Washington, DC (1991).
Pye K, Blott SJ. 2004. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Science International 144(1):19–27.
Ryu SN, Chi-Tang H, Osawa T. 1998. High performance liquid chromatographic of antioxidant lignan glycosides in some varieties of sesame. Journal of Food Lipids 5(1): 17-28.
Sanguansri P, Augustin MA. 2006. Nanoscale materials development – a food industry perspective. Trends in Food Science & Technology 17(10): 547-556.
Seki T, Nagase R, Torimitsu M, Yanagi M, Ito Y, Kise M, Mizukuchi A, Fujimura N, Hayamizu K, Ariga T. 2005. Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in the pre-germinated brown rice. Biological Pharmaceutical Bulletin 28(8): 1539-1541.
Shibata T. 2002. Method for producing green tea in microfine powder. United States Patent US6416803B1.
Shyu YS, Hwang LS. 2002. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Research International 35(4): 357–365.
Stenger F, Mende S, Schwedes J, Peukert W. 2005. Nanomilling in stirred media mills. Chemical Engineering Science 60(16): 4557 – 4565.
Stoscheck CM. 1990. Quantitation of Protein. Methods in Enzymology 182: 50-69.
Tai SSK, Wu LSH, Chen ECF, Tzen JTC. 1999. Molecular cloning of 11S globulin and 2S albumin, the two major seed storage proteins in sesame. Journal of Agricultural and Food Chemistry 47(12): 4932 -4938.
Vallar S, Houivet D, Fallah JEl, Kervadec D, Haussonne JM. 1999. Oxide slurries stability and powders dispersion: Optimization with zeta potential and rheological measurements. Journal of the European Ceramic Society 19(6-7): 1017-1021.
William CH. 1999. Aerosol technology: properties, behavior and measurement of airborne particles. New York: Wiley.
Wissing SA, Muller RH. 2003. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity – in vivo study. European Journal of Pharmaceutics and Biopharmaceutics 56(1): 67-72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30442-
dc.description.abstract芝麻粕為芝麻去除油脂之殘渣,通常用來當作動物飼料或肥料,芝麻渣含豐富的蛋白質、膳食纖維、礦物質與lignan glycosides,這些物質對人類健康是有益的。如果能夠加工成一良好產品,是對消費者有益的。本論文目的在探討介質研磨對於芝麻粕的影響,利用介質研磨技術作為芝麻粕一種加工方式,產生新穎性的加工產品,以期增加芝麻粕的利用價值。實驗以緬甸黑芝麻為試驗材料,利用壓榨方式與正已烷去除油脂,得到的芝麻粕經粗碎後,過20 mesh篩網,體積平均粒徑為239.3 ± 7.85 μm,藉由介質研磨技術將其粒徑下降至奈米/次微米等級。探討芝麻粕添加量之濃度對懸浮液粒徑分佈的影響。黏度分析、粒徑分佈、表面電位、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、sesaminol triglucoside含量與研磨後之外觀特性用於評估奈米/次微米芝麻懸浮液之應用。
5、10、15、20及25克芝麻粕原料與500 mL去離子水,以0.8 mm與0.3 mm之釔鋯珠作為介質研磨,經過3小時研磨後,芝麻粕的平均粒徑會由239.3 μm大幅下降。濃度會影響研磨效果,以5% (w/v)濃度的研磨效果最佳,75%的微粒為奈米/次微米等級;高濃度的研磨效果會因黏度的遽升而下降。研磨後之懸浮液為一穩定的分散相,穿透式電子顯微鏡證實奈米微粒的影像,掃描式電子顯微鏡觀察研磨後之懸浮液凍乾粉末之表面,有許多凸起的柱狀物。研磨後懸浮液之sesaminol triglucoside含量比熱水粗萃物含量較高,分別為3.20與0.33 mg/g dried weight DSM.
研磨後的產品會部分殘留於研磨模室內與附著於釔鋯珠表面。測定研磨前後之一般成份分析,粗蛋白質含量些微降低、而膳食纖維含量些微上升,顯示研磨模室內殘留以蛋白質為主,但整體比例與原料相比無顯著性地差異。
zh_TW
dc.description.abstractThe defatted sesame meal (DSM) was the by-product from the extracting process of sesame oil. DSM was generally used as animal feed or fertilizer. The components in DSM include protein, cellulose, minerals and lignan glycosides, which were good for the health of human being. It would be beneficial to consumers if DSM could be further processed to be a good product. In this article, the effect of media milling on defatted sesame meal was investigated. Medium-milling would be an alternative method to process DSM and to produce a new product and to increase the useful application. Burma black sesame was used as the experimental material in this study. For removing sesame oil by pressing and n-hexane extracting was order to obtain DSM which with volume mean diameter 239.3 ± 7.85 μm was reduced to nano/submicron scale by the processing of medium milling technology. The influence of solid concentrations on particle size distribution of suspension was discussed. The apparent viscosity, particle size distribution, Zeta potential, TEM and SEM morphology, sesaminol triglucoside contents and appearance of milled product were applied to evaluate the application of suspension.
The mean diameter by volume of DSM is reduced from 239.3 μm to nano/submicron scale after medium milling for 3 hours, which the milling medium is Y-Zr beads with average diameter 0.8 mm and then 0.3 mm. The solid concentration was found a key element on affecting efficiency of milling. The best concentration of milling effect is 5% (w/v). Stability of milled product was indicated by Zeta potential (Z). The TEM photographs proved the morphology of nano/submicron sesame. The SEM photographs shown that milled lyophilized powder has different surface structure compared with raw material. Sesaminol triglucoside contents of milled sesame suspension is higher than that of hot water extract, which were 3.20 and 0.33 mg/g dried weight DSM, respectively.
The milled product would partially remain in milling chamber, especially the surface of Y-Zr beads. Proximate composition of unmilled and milled. The content ratio of crude protein was lower, but the content ratio of dietary fiber was higher. The major was crude protein remain in milling chamber, but proximate composition of milled was not significantly different when compared with that of raw material.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:03:54Z (GMT). No. of bitstreams: 1
ntu-96-R94641014-1.pdf: 2660869 bytes, checksum: 3676687023151ff35138fc0c7f2ce4d4 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents謝辭 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
壹、前言 1
貳、文獻回顧 2
2.1. 奈米科技 2
2.1.1. 定義與歷史發展 2
2.1.2. 奈米粒子簡介 5
2.1.3. 食品奈米科技 7
2.2. 奈米量測 10
2.2.1. 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 10
2.2.2. 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 10
2.2.3. 掃描穿隧式顯微鏡 (scanning tunneling microscopy, STM) 11
2.2.4. 原子力顯微鏡 (atomic force microscopy, AFM) 11
2.2.5. 雷射粒徑分析儀 11
2.3. 表面電位 (Zeta potential) 15
2.4. 芝麻與芝麻粕 17
2.4.1. 芝麻簡介 17
2.4.2. 成分探討 17
2.4.3. 生理功能 18
2.4.4. 脫脂芝麻粕之研究 20
2.5. 膳食纖維 (Dietary Fiber) 23
參、研究目的 24
肆、實驗架構與流程 25
伍、材料與方法 26
一、 材料 26
二、 藥品 26
(一) 標準品 26
(二) 試劑 26
(三) 溶劑 27
三、 儀器 27
四、 實驗方法 33
(一) 樣品製備 33
(二) 研磨 33
(三) 分析 33
1. 一般成分分析 33
2. 過氧化價(peroxide value)測定 37
3. 固形物含量 38
4. 粒徑分析 38
5. 芝麻粕中Sesaminol triglucoside含量分析 39
6. Bradford蛋白質定量 40
7. 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 40
8. 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 40
9. 表面電位量測 40
10. 檢測研磨介質之殘留 41
11. 統計分析 41
陸、結果與討論 42
一、黑芝麻一般組成 42
二、濃度對平均粒徑分佈之影響 44
三、粗蛋白質與膳食纖維含量 57
四、Sesaminol triglucoside含量 59
五、芝麻粕懸浮液之離心上清液 62
5.1 上清液之粒徑分佈、固形物含量與TEM 62
5.2 上清液之蛋白質含量 62
六、TEM 65
七、SEM 65
八、Zeta potential 69
九、研磨後芝麻粕懸浮液烘乾之外觀 70
柒、結論 72
捌、參考文獻 73
玖、附錄 79
dc.language.isozh-TW
dc.subject介質研磨zh_TW
dc.subject脫脂芝麻粕zh_TW
dc.subject濃度zh_TW
dc.subject粒徑分佈zh_TW
dc.subject成份分析zh_TW
dc.subjectparticle sizeen
dc.subjectsesameen
dc.subjectcompositionen
dc.subjectmedia-millingen
dc.subjectconcentrationen
dc.title介質研磨對脫脂芝麻粕之影響zh_TW
dc.titleThe effect of media milling on defatted sesame mealen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧訓,孫璐西,蕭寧馨,賴鳳羲
dc.subject.keyword脫脂芝麻粕,介質研磨,濃度,粒徑分佈,成份分析,zh_TW
dc.subject.keywordsesame,media-milling,concentration,particle size,composition,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2007-07-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved