請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30360完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊東漢 | |
| dc.contributor.author | Shih-Yen Lin | en |
| dc.contributor.author | 林士硯 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:02:02Z | - |
| dc.date.available | 2007-07-19 | |
| dc.date.copyright | 2007-07-19 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-06 | |
| dc.identifier.citation | [1] G. Moore, “Cramming more components onto integrated circuits”, Electronics,
38 (1965), pp.114-114. [2] Ravi Mahajan, Chia-pin Chiu, and Greg Chrysler, “Cooling a microprocessor chip”, Proceedings of the IEEE, 94 (2006), pp.1476 [3] International technology roadmap for semiconductors, ITRS, 2006 UPDATE http://www.itrs.net/Links/2006Update/FinalToPost/00_ExecSum2006Update.pdf [4] R.Viswanath,V.Wakharkar,A.Watwe, andV.Lebonheur, “Thermal Performance Challenges from Silicon to Systems”, Intel Technology Journal, Q3(2000),pp.1-16. [5] H. B. Ma and G. P. Peterson, “The Influence of the Thermal Conductivity on the Heat Transfer Performance in a Heat Sink”, Transactions of the ASME 124, 9(2002), pp.164-169. [6] Cook R.S., Token, K. H. and Calkins, R.L. “A Novel Concept for Reducing Thermal Resistance”, J. Spacecraft, Vol.21, 1(1984), pp.122-124 [7] Cook R.S. and Token, K.H., “Simple Thermal Joint,” U.S. Patent 4,384,610, May 24, 1983 (Issued to McDonnel Douglas Corp) [8] N. C. Lee, “Lead-Free Soldering–Where the World is Going”, Adv. Microelectron., 26(1999), pp.29-35 [9] J. Cannis, Green IC packaging, Adv. Packag. (8)(2001), pp.33-38 [10] J.P. Gwinn, R.L. Webb, “Low melting point thermal interface material”, Proc. ITherm., (2002), pp. 671–676 [11] D.D.L. Chung “Materials for thermal conduction”, Applied thermal engineering, 21(2001), pp. 1593 [12] Dr. Franz Simon, “Alternatives for Nickel in electroplating Processes”, Trans. IMF, 75(3), (1997), pp.B53-B56 [13] K. Wong, K. Chi and A. Rangappan, “Application of Electroless Nickel Plating In The Semiconductor Microcircuit Industry”, Plating and Surface Finishing, (1998), pp.70-76 [14] J. P. Gwinn and R. L. Webb, “Performance and testing of thermal interface materials”, Microelectronics Journal, 34 ( 2003 ), pp. 215-222. [15] Daniel Blazej, “Thermal Interface Materials” http://www.electronics-cooling.com/html/2003_november_al.html [16] R. Mahajan, K. Brown and Atluri V., “The Evolution of Microprocessor Packaging”, Intel Journal of Technology, 3 Quarter(2000), pp. 1 [17] V. Atluri, R. Mahajan, P. Patel, D. Mallik, J. Tang, V. Wakharkar, G. Chrysler, C-P. Chiu, G. Choksi, R. Viswanath, “Critical Aspects of High-Performance Microprocessor Packaging”, MRS Bulletin, 28 (2003), pp. 21-34. [18] Peter Rodgers, Valérie Eveloy, Emil Rahim, and David Morgan, “Thermal Performance and Reliability of Thermal Interface Materials: A Review”, 7th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, (2006) [19] International Electronics Manufacturing Initiative (iNEMI) 2004 Technology Roadmap http://www.nemi.org./cms/roadmapping. [20] A. F. Mills, “Basic heat and mass transfer”, Irwin, 1995. [21] C.P. Chu, G.L. Solbrekken, Y.D. Chung, “Thermal modeling of grease-type interface material in PPGA application” Proc. 13th IEEE Semi-Therm. 1 (1997), pp.57–63 [22] R. Mahajan, C.-P. Chiu, and R. Prasher. “Thermal Interface Materials: A Brief Review of Design Characteristics and Materials”, Electron. Cooling. 10 (2004) [Online]. Available:http://www.electronicsooling.com/html/2004_february_a1.html. [23] V. Singhal, T. Siegmund and S. V. Garimella, “Optimization of Thermal Interface Materials for Electronics Cooling Applications”, IEEE Trans. Compon. Packag. Technol., 27(2004), pp.244-252. [24] R. Prasher, “Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials”, J. Heat Transf., 123(2001), pp. 969–975. [25] M. Grujicic, C.L. Zhao, E.C. Dusel, “The effect of thermal contact resistance on heat management in the electronic packaging ”, Applied Surface Science 246 (2005), pp. 290–302 [26] Ravi Prasher, “Thermal Interface Materials:Historical Perspective, Status, and Future Directions”, Proceedings of the IEEE, 94(2006), pp.1571 [27] J, S. Subramanian, P. Rodgers, J. Newson, T. Rude, Z. He, E. Besnoin, T.P. Weihs, V. Evelog, and M. Pecht, “Room temperature soldering of microelectronic components for enhanced thermal performance”, 6th. Int. Conf OR Thermal, Mechanical and Multiphysics Simlm'on and Experiments in Micro-Electronics and Micro-Systems, (2005) [28] Richard F. Hill and Jason L. Strader, “Practical Utilization of Low Melting Alloy Thermal Interface Materials”, SEMI-THERM Symposium,(2006), pp.23 [29] Chris G. Macris, Thomas R. Sanderson, Robert G. Ebel, Christopher B. LeyerlePerformance, “Reliability, and Approaches Using a Low Melt Alloy as a Thermal Interface Material”, Advance Technical Program, (2004) [30] Seung Wook Yoon, Byung-Sup Rho, Hyuck Mo Lee, Choong-Un Kim, and Byeong-Joo Lee, “Investigation of the phase equilibria in the Sn-Bi-In alloy system”, Metallurgical and Materials Transactions, 30A(1999), pp. 1503 [31] V.T. Witusiewicz , U. Hecht, B. B‥ottger, S. Rex, “Thermodynamic re-optimisation of the Bi–In–Sn system based on new experimental data”, Journal of Alloys and Compounds, 428 (2007), pp. 115 [32] S. SENGUPTA, H. SODA, A. McLEAN, “Microstructure and properties of a Bi-In-Sn eutectic alloy”, Journal of materials science, 37 (2002), pp.1747 [33] M.A. RUGGIERO and J.W. RUTTER, Mater. Sci. Technol. 11(1995), 136. [34] V.T. Witusiewicz, U. Hecht, S. Rex, M. Apel, ”In situ observation of microstructure evolution in low-melting Bi-In-Sn alloys by light microscopy”, Acta Materialia,53 (2005), pp. 3663 [35] S. Rex, B. B‥ottger, V. Witusiewicz, U. Hecht, “Transient eutectic solidification in In–Bi–Sn : Two-dimensional experiments and numerical simulation”, Materials Science and Engineering A, 413–414 (2005),pp. 249 [36] K.A. Jackson, J.D. Hunt, Trans. Met. Soc. AIME 236(1966)1129–1142. [37] M.A. Ruggiero, J.W. Rutter, Mater. Sci. Technol. 13(1997)5–11. [38] B. Brunetti, D. Gozzi, M. Iervolino, V. Piacente, G. Zanicchi, N. Parodi, G. Borzone, “ Bismuth activity in lead-free solder Bi-In-Sn alloys”, Computer Coupling of Phase Diagrams and Thermochemistry, 30 (2006), pp. 431 [39] Fujiwara, K. and Asahi, M., “Characterization of inter-metallic compound formation on In/Bi/Sn Solder bumps used in Pb-alloy Josephson chip packaging”, Trans. on Components, Packaging, and Manufacturing Technology, 10(1987), pp. 263 [40] KOICHI FUJIWARA, MASAYOSHI ASAHI, SHIGEYUKI TSURUMI, AND YOSHIAKI TAKEUCHI, “Water-Soluble Flux for Pb-Alloy Josephson Device Packaging” IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING TECHNOLOGY, 10(1987), pp. 258 [41] F. Gneccoa, E. Riccia, S. Amorea,b, D. Giurannoa, G. Borzoneb, G. Zanicchi, “Wetting behaviour and reactivity of lead free Au–In–Sn and Bi–In–Sn alloys on copper substrates”, International Journal of Adhesion & Adhesives, 27 (2007), pp. 409 [42] Ahmed Sharif, Y.C. Chan, “Effect of indium addition in Sn-rich solder on the dissolution of Cu metallization”, Journal of Alloys and Compounds, 390 (2005), pp. 67 [43] C.L. YU, S.S. Wang, and T.H. Chuang, “Intermetallic compounds formed at the interface between liquid Indium and Copper substrates”, Journal of electronic materials, 31(2002), pp.488-493 [44] Dae-Gon Kim, Chang-Youl Lee, Seung-Boo Jung, “Interfacial reactions and intermetallic compound growth between indium and copper”, journal of materials science: materials in electronics, 15(2004), pp. 95 [45] Alex C. K. So, Yan C. Chan, and J. K. L. Lai, “Aging studies of Cu-Sn intermetallic compounds in annealed surface mount solder joints”, TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY B, 20(1997), pp. 161 [46] DAE-GON KIM and SEUNG-BOO JUNG, “The effect of isothermal aging on the thickness of intermetallic compound layer growth between low melting point solders and Ni-Plated Cu substrate”, Journal of electronic materials, 33(2004), pp.1561 [47] Chun-Jen Chen and Kwang-Lung Lin, “Wetting interactions between the Ni-Cu-P deposit and In-Sn solders”, TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY B, 20(1997), pp. 211 [48] Ahmed Sharif, Y.C. Chan, “Interfacial reactions on electrolytic Ni and electroless Ni (P) metallization with Sn-In-Ag-Cu solder”, Journal of Alloys and Compounds, 393 (2005), pp. 135 [49] Y.H. Tesng, M.S. Yeh, and T.H. Chuang, “Interfacial reaction between liquid indium and nickel substrate” Journal of electronic materials, 28(1999), pp. 105 [50] M.Y. Chiu, S.Y. Chang, Y.H. Tseng. Y.C. Chan, T.H. Chuang, “Characterization of intermetallic compounds formed during the interfacial reactions of liquid Sn and Sn-58Bi solders with Ni substrates”, Z. Metallkd 93(2002), pp.248 [51] M.Y. Chiu, S.S. Wang, and T.H. Chuang, “Intermetallic compounds Formed during interfacial Reactions between Liquid Sn-8Zn-3Bi Solders and Ni Substrates”, Journal of electronic materials, 31(2002), pp.494 [52] T.H. Chuang, K.W. Huang, and W.H. Lin, “Mechanisms for the Intermetallic Formation during the Sn-20In-2.8Ag/Ni Soldering Reactions”, Journal of electronic materials, 33(2004), pp. 374 [53] Y.M. Liu and T.H. Chung, ”Interfacial Reactions between Liquid Indium and Au-Deposited Substrates”, J. Electron., 29 (2000), pp.405 [54] Mater. Sci. Eng. A238, (1997), pp.196 [55] F.S. Shieu, C.F. Chen, J.G. Sheen and Z. C. Chang, ”Intermetallic Phase Formation and Shear Strength of a Au-In Microjoint”, Thin Solid Films, 346(1999), pp.125 [56] G.W. Powell, and J.D. Braun, Trans. AIME. 230. (1964), pp.694 [57] F.G. Yost, F.P. Ganyard and M.M. Karnowsky, “Layer Growth in Au-Pb/In Solder Joints”, Metall. Trans. A, 7(1976), pp.1141 [58] F.G. Yost, ”Soldering to Gold Films”, Gold Bull., 10, pp.94(1977) [59] Clemens J.M. Lasance, “The urgent need for widely-accepted test methods for thermal interface materials”, 19th IEEE SEMI-THERM Symposium, (2003) [60] Rencz M., SzPkely K, Farkas G.. Courtois B., Measuring Interface Thermal Resistance Values by Transient Testing, Proc. ITHERM 2002, pp.136-141 [61] Jim J.-W. Tzeng', Tom W. Weber and Dan W. Krassowski, “Technical review on thermal conductivity measurement techniques for thin thermal interfaces”, Sixteenth IEEE SEMI-THERMTM Symposium, (2000) [62] Gary L. Solbrekken, Chia-Pin Chiu, Ben Byers, and David Reichenbacher, “The development of a tool to predict package level thermal interface material performance”, Inter Society Conference on Thermal Phenomena, (2000) [63] Michael H. Bunyan and Miksa de Sorgo, “Measurement, Signification and Application of thermal properties of thermal interface materials”, 19th IEEE SEMI-THERM Symposium, (2003) [64] J. P. Gwinn, M. Saini and R. L. Webb, “Apparatus for accurate measurement of interface resistance of high performance thermal interface materials”, Inter Society Conference on Thermal Phenomena, (2002) [65] House, N. “Thermal Interface Basics,” 2001, <http://www.arcticsilver.com/thermal_interface _basics.htm> [66] Don Keams, “Improving accuracy and flexibility of ASTM D5470 for high performance thermal interface materials”, 19th IEEE SEMI-THERM Symposium, (2003) [67] Nancy F. Dean and Amy L. Gettings, “Experimental testing of thermal interface materials on non-planar surface”, Fourteenth IEEE SEMI-THERMTM Symposium,(1998) [68] Chia-Pin Chiu *, James G. Maveety, Quan A. Tran, “Characterization of solder interfaces using laser flash metrology”, Microelectronics Reliability, 42 (2002), pp.93 [69] Christine Vogdes and Felix Oseguera, “Thermal testing methods for evaluating thin thermally conductive materials”, Sixteenth IEEE SEMI-THERMTM Symposium, (2000) [70] 魏大華,”銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究”,中央大學碩士論文,(2001),指導教授:林景崎 [71] Risto Hienonen, Jari Keskinen and Timo Koivuluoma, “Reliability of materials for the thermal management of electronics”, (2006) http://www.vtt.fi/inf/pdf/publications/2006/P619.pdf [72] Ching-Yu Huang and Shinn-Wen Chen, “Interfacial Reactions in In-Sn/Ni Couples and Phase Equilibria of the In-Sn-Ni System”, Journal of electronic materials, 31(2002), pp.152 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30360 | - |
| dc.description.abstract | 近年來,電子產業蓬勃發展,消費性電子產品亦不斷朝向高效能、高功率、低能耗等方向前進,帶動IC元件之散熱需求提高。傳統熱界面材料之散熱效能,面臨高頻、高瓦數之挑戰。本研究遂採用低熔點合金In-32.5Bi-16.5Sn作為熱界面材料,利用合金高熱傳導性之優點,降低積存於晶片與均熱片界面之熱量。實驗探討In-32.5Bi-16.5Sn與金屬基板之界面反應,計算介金屬成長動力學以及不同基板之溶解速率差異。金屬基板之選擇以實際均熱片性質為考量:銅基板擁有高熱傳導係數,電鍍鎳常作為擴散阻擋層,金常作為氧化保護層及潤濕層。最後,針對低熔點合金在高熱傳導率之銅基板下做熱阻性質測量。
實驗結果顯示,低熔點合金In-32.5Bi-16.5Sn與銅基板反應之界面生成物為Cu6(In, Sn)5,屬於擴散控制,其活化能為2.86 kJ/mole;與銅電鍍鎳基板反應之界面生成物Ni3(Sn, In)4相,活化能為52.15 kJ/mole;與金基板反應之界面生成物在80℃時,生成AuIn2與薄層AuIn,反應溫度100℃以上,介金屬分為三層,AuIn2、AuIn、Au7In3,其中AuIn2活化能為37.64 kJ/mole,Au7In3活化能為79.69 kJ/mole。此外,電鍍鎳層最大消耗厚度約3-4 μm,是銅基板消耗厚度的1/5倍。低熔點合金In-32.5Bi-16.5Sn之熱阻抗在100 W之情況,與介金屬厚度之增加趨勢相似,都有上升現象。 | zh_TW |
| dc.description.abstract | As the developing of electronic industry and consuming electronic products proceeding toward high performance、high power and low power dissipation, the demand of the heat dissipation of IC component have been promoted. The heat dissipation of conventional thermal interface materials is challenged by the increasing demand for higher frequency and higher power. Therefore, this study adopts Low-melting point alloy In-32.5Bi-16.5Sn as thermal interface material, and tries to make use of the high thermal conductivity of metal to deduce the thermal budget at the interface between ship and intergraded heat spreader. This investigation includes the interfacial reaction between In-32.5Bi-16.5Sn alloy and metal substrates, calculating the kinetic of intermetallic compounds and dissolution rates of different substrates. Metallic substrates are chosen for real condition: Cu substrate processes high thermal conductivity, Ni-electroplated layer uses as a diffusion barrier, Au usually uses as an oxidation protective player or a wetting layer. Finally, according to the high conductivity of Cu substrate, the thermal resistance of Cu/In-32.5Bi16.5Sn/Cu is measured.
The results show that the intermetallic compound formed at the interface of In-32.5Bi-16.5Sn/Cu is Cu6(In, Sn)5. The growth of Cu6(In, Sn)5 compound is diffusion-controlled, and the activation energy for the growth of Cu6(In, Sn)5 compound is calculated to be 2.86 kJ/mole. The intermetallic compound formed at the interface of In-32.5Bi-16.5Sn/Ni is Ni3(Sn, In)4, and the growth of Ni3(Sn, In)4 compound is diffusion-controlled. The activation energy of Ni3(Sn, In)4 intermetallic compound is calculated to be 52.15 kJ/mole. The intermetallic compound formed at the interface In-32.5Bi-16.5Sn/Au could be divided by temperature: (1) AuIn2、AuIn intermetallics are formed respectively at 80℃(2) AuIn2、AuIn、Au7In3 intermetallics are observed respectively above 100℃. The growths of AuIn2 and Au7In3 compounds are diffusion-controlled, and the activation energies for AuIn2 and Au7In3 compounds are calculated to be 37.64 kJ/mole and 79.69 kJ/mole, respectively。In addition, the maximum consuming thickness of Ni-electroplated layer is about 3~4 μm, which is one fifth of the maximum consuming thickness of Cu substrate. The thermal impedance of Cu/In-32.5Bi-16.5Sn/Cu at 100W has similar increasing trend with the growth of Cu6(In, Sn)5 compound. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:02:02Z (GMT). No. of bitstreams: 1 ntu-96-R94527024-1.pdf: 11875035 bytes, checksum: 557adb40e5f5f112233f78df48ebd02a (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 1. 前言 1
2. 文獻回顧 4 2.1. 熱界面材料 4 2.2. 熱界面材料種類 10 2.3. 低熔點合金 13 2.4. In-Bi-Sn合金 15 2.5. 界面反應回顧 19 2.5.1. 界面成長動力學 19 2.5.2. 銅基板文獻回顧 21 2.5.3. 鎳基板文獻回顧 23 2.5.4. 金基板文獻回顧 25 2.6. 熱阻測試方法 27 3. 實驗步驟 32 3.1. 材料製備 32 3.2. 界面介金屬成長分析 33 3.3. 基材溶解速率反應 35 3.4. 熱性 35 3.4.1. 熱阻抗測量規範 35 3.4.2. 熱阻抗實驗 36 4. 結果與討論 42 4.1. In-Bi-Sn合金 42 4.1.1. 微結構組織 42 4.1.2. 熱差分析(DSC) 48 4.2. In-32.5Bi-16.5Sn與銅基板 53 4.2.1. In-32.5Bi-16.5Sn/Cu之界面反應 53 4.2.2. In-32.5Bi-16.5Sn/Cu之界面生成物成長動力學 61 4.2.3. In-32.5Bi-16.5Sn/Cu之銅基板溶解速率 64 4.3. In-32.5Bi-16.5Sn與銅電鍍鎳基板 68 4.3.1. In-32.5Bi-16.5Sn/Ni之界面反應 68 4.3.2. In-32.5Bi-16.5Sn/Ni之界面生成物成長動力學 75 4.3.3. In-32.5Bi-16.5Sn/Ni之電鍍鎳層溶解速率 78 4.4. In-32.5Bi-16.5Sn與金基板界面反應 81 4.4.1. In-32.5Bi-16.5Sn/Au之界面反應 81 4.4.2. In-32.5Bi-16.5Sn/Au之界面生成物成長動力學 88 4.5. In-32.5Bi-16.5Sn合金之熱性 95 5. 結論 101 6. 參考文獻 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱阻抗 | zh_TW |
| dc.subject | 低熔點合金 | zh_TW |
| dc.subject | 熱界面材料 | zh_TW |
| dc.subject | Thermal interfacial material | en |
| dc.subject | Thermal impedance | en |
| dc.subject | Low melting point alloy | en |
| dc.title | In-Bi-Sn低熔點合金熱界面材料之熱性、微結構與界面反應研究 | zh_TW |
| dc.title | Thermal Property、Microstructure and Interfacial Reactions of In-Bi-Sn Low-Melting Point Thermal Interfacial Alloys | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林招松,黃振東,吳春森,林文強 | |
| dc.subject.keyword | 低熔點合金,熱界面材料,熱阻抗, | zh_TW |
| dc.subject.keyword | Low melting point alloy,Thermal interfacial material,Thermal impedance, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 11.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
