請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30223
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李源弘 | |
dc.contributor.author | Shiang-Yu Lai | en |
dc.contributor.author | 賴相宇 | zh_TW |
dc.date.accessioned | 2021-06-13T01:44:39Z | - |
dc.date.available | 2010-07-16 | |
dc.date.copyright | 2007-07-16 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-10 | |
dc.identifier.citation | 1. 莊賦翔,“藍綠光發光二極體,”科學發展,349期,第46-53頁,2002
2. J. W. Orton, C. T. FoxonRep, Prog. Phys. 61 (1998) 1–75 3. J. A. Van Vechten, Phys. Rev. B 7 (1973) 1479 4. J. Karpinski, J. Jun, S. Porowski, J. Crystal Growth 66 (1984) 1 5. W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, O. Shimomura, Nat. Mater. 2 (2003) 735 6. Bernard Gil, “Group III nitride semiconductor compounds : physics and applications”, Oxford : Clarendon Press ; New York : Oxford University Press, 1998 7. B. Wang, M.J. Callahan , J Crystal Growth 291 (2006) 455 8. R. Juza, H. Jacobs, H. Gerke, Phys. Chem. 70 (1966) 1103 9. H. Jacobs and D. Schmidt, High-pressure ammonolysis in solidstate chemistry, in Current Topics in Materials Science, ed. E. Kaldis, North-Holland Publishing Co., New York, 1982, vol. 8. 10. A. K. Hollliday, A. G. Massey, “Inorganic Chemistry in Non-Aqueous Solvents”, Pergamon Press Ltd:Oxford, 1965 11. B. Wang, M. Callahan, K.D Rakes, L.O Bouthillette, S.Q. Wang, D.F Bliss, J.W. Kolis, J. Crystal growth 287 (2006) 376 12. D. Peters, J. Crystal growth 104 (1990) 411 13. R. Dwilinski, A. Wysmolek, J. Baranowski, M. Kaminska, J. Garczynski, L. Sierzputowski and H. Jacobes, Acta Physica Polonica A 88 (1995) 833 14. R. Dwilinski, J.M. Baranowski, M. Kaminska, R. Doradzinski, J. Garczynski and L. Sierzputowski, Acta Physica Polonica A 90 (1996) 763 15. R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, J.M. Baranowski and M. Kaminska, Diam. And Rel. Mater. 7 (1998) 1348 16. R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, M. Palczewska, A. Wysmolek and M. Kaminska, MRS Intern. J. Nitride Semicondt. Res. 3 (1998) 25 17. Y.C. Lan, X.L. Chen, Y.P. Xu, Y.G. Cao and F. Huang, Mater. Res. Bull. 35 (2000) 2325 18. D. Ketchum and J. Kolis, J. Crystal Growth 222 (2001) 431 19. A. Yoshikawa, E. Ohshima, T. Fukuda. H. Tsuji, K. Oshima, J Crystal Growth 260 (2004) 67 20. M. Callahan, B. G. Wang, K. Rakes, D. Bliss, L. Bouthillette, M. Suscavage, S. Q. Wang, J. Mater. Sci 41 (20006) 1399 21. T. Hashimoto, K. Fujito, R. Sharma, E.R. Letts, P.T. Fini, J.S. Speck, S. Nakamura, J. Crystal Growth 291 (2006) 100 22. H. Jacobs, B. Nöcker, Z. Anorg. Allg. Chem. 619 (1993) 381 23. T. Hashimoto, K. Fujito, B.A. Haskell, P.T. Fini, J.S. Speck, S. Nakamura, J. Crystal growth 275 (2005) 525 24. B. Wang, M. Callahan, K.D Rakes, L.O Bouthillette, S.-Q. Wang, D.F Bliss, J.W. Kolis, J. Crystal growth 287 (2006) 376 25. Y. Kagamitani, D. Ehrentraut, A. Yoshikawa, N. Hoshino, T. Fukuda, S. Kawabata and K. Inaba, Jpn. J. Appl. Phys. 44 (2005) 67 26. L. Liu, J.H. Edgar, Materials Science and Engineering R 37 (2002) 61-127 27. H. Yang et al, Appl. Phys. Lett. 74 (1999) 2498 28. H. Yamane, M. Shimada, S. J. Clarke, F. J. Disalvo, Chem. Mater. 9 (1997) 413 29. A. P. Purdy, Chem. Mater 11 (1999) 1648 30. R. J. Jouet, A. P. Purdy, R. L. Wells, J. F. Janik, J. Cluster Science 13 (2002 ) 469 31. J. Karpinski, J. Jun, S. Porowski, J. Crystal Growth 56 (1982) 77 32. S. Krukowski, Cryst. Res. Technol. 34 (1999) 785 33. A. S. Segal, J. Crystal Growth 211 (2000) 68 34. X. L. Chen et al, Mod. Phys. Lett. B. 13 (1999) 285 35. Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu, J.K. Liang, J. Crystal Growth 207 (1999) 247 36. Y.G. Cao, X.L. Chen, Y.C. Lan, J.Y. Li, Y.P. Xu, T. Xu, Y. Zhang, J.K. Liang, Appl. Phys. A. 71 (2000) 351 37. D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata, J. Materials Chemistry 17 (2007) 886 38. J. W. Orton, C. T. Foxon, Rep. Prog. Phys. 61 (1998) 1 39. F. S. Liu et al, J. Mater. Res. 19 (2004) 3484 40. H. L. Liu et al, Chem. Phys. Lett. 345 (2001) 245 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30223 | - |
dc.description.abstract | 氮化鎵在藍綠光二極體與雷射二極體的光電運用上,已成為具吸引力的材料之一,氮化鎵光電元件目前是採用磊晶的方式在異質基材上沉積薄膜,也由於缺乏同質基材的緣故,使得鍍膜產生了無法避免的缺陷,裂化了元件的性質與壽命,所以開發氮化鎵同質基材是必然的趨勢,而氨熱法長晶在此方面具高度的發展性。
本實驗中,使用三種不同的酸性礦化劑(NH4Cl、NH4Br、NH4I),並且在不同的溫度下進行長晶,將鎵、礦化劑及液態氨溶劑密封於壓力釜中,施加溫度及壓力至液態氨的臨界點之上,此時為超臨界流體,此狀態下鎵與礦化劑作用而形成中間產物,中間產物分解之後析出氮化鎵晶體,實驗結果顯示,NH4Cl可在低溫下合成出氮化鎵晶體,相較於其他礦化劑,NH4Cl較具活性可以促進氮化鎵合成,從SEM來看,氮化鎵晶體由許多的奈米顆粒所聚集而成,XRD顯示,酸性礦化劑所合成的氮化鎵,都有出現兩種晶體結構,NH4Cl較易形成六方晶結構,而NH4Br、NH4I較易形成立方晶結構。 | zh_TW |
dc.description.abstract | GaN have been an attractive material for optoelectronic applications in blue-green light emitting diodes and blue laser diodes due to there excellent property. GaN thin film deposited on heterogeneous substrates bring a drawback in film quality because of lack of GaN substrates. The ammonothermal method is a potential method to synthesize high quality single crystal of GaN for homogeneous substrates.
GaN were synthesized by ammonothermal using three kinds of acid mineralizer (NH4Cl、NH4Br、NH4I) at different process temperature. Precursor (gallium), solvent (ammonia) and mineralizer were sealed in the autoclave. The solvent can be brought to supercritical fluid by increasing temperature and pressure above critical point of solvent. Gallium dissolved in supercritical ammonia to form gallium-containing intermediates and then intermediates converted to crystalline phase of GaN. As the result, using NH4Cl as a mineralizer can synthesize GaN at lower temperature. It seems to be more effect to form GaN compared to other acid minerlizers. In SEM, it shows agglomerate GaN composed of nanoparticales. Depending on XRD, Both wurtzite structure and zinc-blende structure were obtained in ammonothermal synthesis. Using NH4Cl favors wurtzite GaN while using NH4Br and NH4I favor zinc-blende GaN | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:44:39Z (GMT). No. of bitstreams: 1 ntu-96-R94527001-1.pdf: 5338676 bytes, checksum: dd2783dac17a4b37af44d9c6f1bcf27b (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 摘要......................................................I
Abstrat..................................................II 目錄....................................................III 圖目錄....................................................V 表目錄...................................................IX 第一章 緒 論..............................................1 1-1 前言..................................................1 1-2 三五族氮化物單晶塊材生產的限制........................2 1-3 研究動機..............................................5 第二章 理論基礎與文獻回顧.................................6 2-1 氮化鎵晶體成長方法種類................................6 2-2 氨熱法簡介............................................7 2-2-1 氨熱法文獻回顧......................................9 2-2-2 氨熱法長晶的類型...................................11 2-2-3 氨熱法長晶機制.....................................11 2-2-4 礦化劑種類.........................................13 2-2-5 氨熱法反應物溶解...................................15 2-2-6 氮化鎵之結晶相.....................................16 2-3 其他氮化鎵晶體成長方法...............................21 2-3-1 高壓氮溶解成長法...................................21 2-3-2 鈉金屬流法.........................................22 2-3-3 昇華法.............................................24 2-3-4 氫化物氣相磊晶.....................................25 2-4 Rietveld Method晶體結構精算.........................25 2-4-1 Rietveld Method原理介紹...........................25 2-4-2 Rietveld Method應用...............................28 第三章 實驗方法與步驟....................................30 3-1 實驗設備與分析設備...................................30 3-1-1 壓力釜.............................................31 3-2 實驗藥品.............................................31 3-3 實驗方法.............................................32 3-3-1 氨熱法合成氮化鎵的製備.............................33 3-3-2 液態氨的製備.......................................36 3-4 氮化鎵粉末分析方法...................................37 3-4-1 X-ray 繞射分析(XRD)...............................37 3-4-2 場發射掃描式電子顯微鏡分析(FE-SEM).................37 3-4-3 X光能量散佈光譜分析(EDS)..........................37 3-4-4 顯微拉曼光譜分析(Micro-Raman Spectra Analysis).....37 3-4-5 穿透式電子顯微鏡分析(TEM)..........................38 第四章 結果與討論........................................39 4-1 XRD繞射分析.........................................39 4-2 Rietveld Method晶體結構精算.........................45 4-2-1 氮化鎵晶格常數之計算...............................49 4-2-2 氮化鎵相組成之計算.................................51 4-3 氮化鎵晶體微結構之觀察...............................54 4-4 氮化鎵形成機制.......................................63 4-5 成份分析.............................................65 4-6 拉曼光譜分析.........................................66 第五章 結 論.............................................69 參考文獻.................................................70 | |
dc.language.iso | zh-TW | |
dc.title | 使用酸性礦化劑進行氨熱法合成氮化鎵晶體之研究 | zh_TW |
dc.title | The study of ammonothermal synthesis of gallium nitride with acidic mineralizers | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 吳玉祥 | |
dc.contributor.oralexamcommittee | 陳軍華,張文固,張火成 | |
dc.subject.keyword | 氮化鎵,氨熱法,礦化劑,超臨界流體, | zh_TW |
dc.subject.keyword | GaN,ammonothermal method,mineralizer,supercritical fluid, | en |
dc.relation.page | 72 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 5.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。