Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊維
dc.contributor.authorTse-Kai Huangen
dc.contributor.author黃則凱zh_TW
dc.date.accessioned2021-06-13T01:06:26Z-
dc.date.available2012-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citation[1] H. Kallmans, M. Pope, “Photovoltaic effect in organic crystals”, J. Chem.Phys, 30, pp.585-586(1958).
[2] A. K. Ghosh, T. Feng, “Merocyanine organic solar cells”, J.Appl, Phys,49, pp. 5982-5989(1978).
[3] C.W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phy. Lett., 48,pp.183-185(1986).
[4] G. Yu, C. Zhang, A.J. Heeger, “Dual-function semiconducting polymerdevices light-emitting and photodetecting diodes”, Appl. Phys. Lett., 64,pp.1540-1542(1993).
[5] J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes,“Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60heterojunction photovoltaic cell”, Appl. Phys. Lett., 68,pp.3120-3122(1996).
[6] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced
electron transfer from a conducting polymer to buckminsterfullerene” Science, 258, pp.1474-1476 (1992).
[7] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, “2.5 % efficient organic plastic solar cell”, Appl. Phys. Lett., 78, pp.841-843(2001).
[8] G. Li, V. Shortriya, Y. Yao and Y. Yang, “Investigation of annealing
effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, J. Appl. Phys, 98, pp. 043704-1(2005).
[9] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, ”Thermally stable,
efficiency polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater., 15, pp1617-1612(2005).
[10] A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter, H. Hörhold, “Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion”, Adv. Mater., 12, pp.1689-1692(2000).
[11] D.J. Milliron, L. Gur, A.P. Alivisatos, “Hybrid organic nanocrystal solar cells”, Mrs. Bull., 30, pp.41-44(2005).
[12]B. Sun, N.C. Greenham,” Improved effciency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers” Phys. Chem. Chem. Phys., 2006, 8, 3557–3560, 3557
[13] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens” Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells” J. Appl. Phys., Vol. 94, No. 10, 15 November 2003.
[14]A. Moliton, J.M. Nunzi,”Review How to model the behavior of organic photovoltaic cells” Polym. Int. 55: 583-600(2006)
[15]Barry P. Rand and Diana P. Burk,” Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells” Physical Review B 75, 115327 ,2007.
[16] Y. Kim, S. Cook, S. M. Tuldhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculooch,C. S. Ha , M. Ree,”A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells” nature materials Vol 5 March 2006.
[17]M. Jaiswal, R. menon, “Polymer electronic materials:a review of charge transport”Polym. Int. 55:1371-1384(2006).
[18]W.E. Spear, “Electronic Transport in Amorphous Silicon Films“J. Non-cryst. Solid 1:197(1969).
[19] Y. Zhao, G. Yuan, P. Roche,” A calorimetric study of the phase transitions in poly(3-hexylthiophene)” Polymer Volume 36 Number 11 1995 2211.
[20]P. Davide Cozzole, Andreas Kornowski, Horst Weller, “Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods.” J. Am. Chem. Soc. 2003, 125, 14539-14548.
[21] Young-wook Jun, Maria F. Casula, Maria F. Casula, Jae-Hwan Sim, Sang Youl Kim, Jinwoo Cheon, A. Paul Alivisatos, “Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2 Nanocrystals.” J. Am. Chem. Soc. 2003, 125, 15981-15985.
[22] Motonari Adachi, Yusuke Murata, Jun Takao, Jinting Jiu, Masaru Sakamoto, Fumin Wang, “Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the “Oriented Attachment” Mechanism” J. Am. Chem. Soc. 2004, 126, 14943-14949.
[23]A.J. moul´e, k. meerholz” Minimizing optical losses in bulk heterojunction polymer solar cells” Appl. Phys. B 86, 721–727 (2007).
[24]W. J. E. Beek, M. M. Wienk, R.A.J. Janssen,”Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles”Adv. Funct. Mater. 2006, 16,1112-1116.
[25] M.R.Reyes, K. Kim, D. L. Carroll,” High-efficiency photovoltaic devices based on annealed pol 3-hexylthiophene and 1-3-methoxycarbonyl-propyl-1-phenyl-6,6 C61 blends” Appl. Phys. Lett. 87, 083506 ,2005.
[26] E. Klimov,W. Li. Yang,G. G. Hoffmann, J. Loos,” Scanning Near-Field and Confocal Raman Microscopic Investigation of P3HT-PCBM Systems for Solar Cell Applications”, Macromolecules 2006, 39, 4493-4496.
[27]S. Hugger, R. Thomann, T. Heinzel, T. T. Albrecht,”Semicrystalline morphology in thin films of poly(3-hexylthiophene)”,Colloid Polym. Sci.(2004)282:932-938.
[28] A. Zen, M. Saphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, G. Wegner,” Effect of Molecular Weight on the Structure and Crystallinity of Poly(3-hexylthiophene)” Macromolecules 2006, 39, 2162-2171.
[29]T. E.U. Ahokhavets, G. Gobsh, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C. J. Brabec,”Correalayion Between structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells” Adv. Funct. Mater. 2005, 15, 1193-1196.
[30] J. Huang, G. Li, Y. Yang,” Influence of composition and heat-treatment on the charge transport properties of poly3-hexylthiophene and 6,6-phenyl C61-butyric acid methyl ester blends” Appl. Phys. Lett. 87, 112105 ,2005.
[31]W. U. Huynh, University of California, Berkeley, PhD thesis,2002.
[32] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest,” 4.2% efficient organic photovoltaic cells with low series resistances” Appl. Phys. Lett., Vol. 84, No. 16, 19 April 2004
[33] P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, C. J. Brabec,” Influence of the Molecular Weight of Poly(3-hexylthiophene) on the Performance of Bulk Heterojunction Solar Cells” Chem. Mater. 2005, 17, 2175-2180
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29412-
dc.description.abstract本研究主要為有機共軛高分子-無機半導體材料混摻形成之光伏元件的光電性質探討。首先,探討純的導電高分子材料在製作光伏元件為何會失敗。然後探討混摻TiO2奈米顆粒後,由於奈米材料有獨特的表面物理現象,因此可以幫助載子分離,另外也可以提供有效的傳導路徑,最後可以達到效率大幅的提高。
其次,我們觀察熱處理對元件所產生的影響,發現在高溫下退火可以有效的提高效率。因此從光學、XRD、載子飛行時間(Time-of-Flight)等實驗來觀察熱處理對元件所產生的影響。
最終利用合成方式的改變,製作出不同尺寸的TiO2奈米顆粒,來探討不同混摻物尺寸對元件效率的貢獻。奈米顆粒的主要貢獻可以分成兩部分,載子分離(Charge separation)和載子傳導(Charge transport),而在相同的TiO2混摻濃度下,較短的TiO2擁有較多的表面積因此可以貢獻較有效率的載子分離,而長的TiO2卻可以容易形成比較連續的傳導路徑,因此在這兩種效應的平衡下,試圖找出元件效率的最大值。
zh_TW
dc.description.abstractThe investigations focus on hybrid materials photovoltaic properties of organic conjugated polymer and inorganic nano-semiconductor. First of all, we discuss how TiO2 nanorods support charge separation and charge transport in TiO2/P3HT hybrid solar cells. Therefore we tune the TiO2 doping concentration to optimize devices performance.
Secondly, we focus on the topic of thermal treatment effect on devices performance. It is observed that devices performance could significantly enhance after high temperature annealing. Based on optical properties, XRD, and Time-of-Flight carrier mobility measurement system, we discover that after annealing both the crystallite size and carrier mobility increasing.
Finally, we use synthesis method to change the length of TiO2 nanorods and investigate the length dependent effect on devices performance. We know that TiO2 inclusion supports both charge separation and transport, therefore we focus on different length of TiO2 nanorods effect on charge separation and transport properties. At the same doping concentration, the shorter TiO2 nanorods result in more surface area and contribute to more efficient charge separation; the otherwise the longer TiO2 nanorods could easily form continuous transport path to support efficient charge transport. Based on the balance of these two effects, we try to find the maximal performance of TiO2/P3HT hybrid solar cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:06:26Z (GMT). No. of bitstreams: 1
ntu-96-R94527062-1.pdf: 4732869 bytes, checksum: 04e1cfcd1eb6eccc24a7e61e7502b153 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
第一章 導論 1
1.1太陽能源 1
1.2研究動機 3
第二章 太陽能轉換 5
2.1太陽能電池介紹 5
2.1.1無機太陽能電池介紹 5
2.1.2高分子太陽能電池介紹 7
2 效率特性介紹 11
2.2.1 開路電壓和短路電流 11
2.2.2填充因素 14
2.2.3能量轉換效率和量子轉換效率 17
第三章 共軛高分子 18
3.1高分子結構 18
3.2 在高分子中的載子傳導 21
3.3高分子之特徵分析 23
3.3.1 GPC 23
3.3.2TGA 24
3.3.3 DSC 25
3.3.4 PL & Absorption 26
第四章 奈米晶體材料 27
4.1奈米晶體之合成 27
4.2 TiO2之奈米晶體長短控制 29
4.3 TiO2之結構分析 Structure Analysis 33
4.3.1粉末XRD分析 33
4.3.2TEM影像分析 35
4.3.3粉末FTIR光譜 37
第五章 有機光伏元件之製備 38
5.1 膜厚控制 40
5.1.1 PEDOT膜厚控制 40
5.1.2 吸收度與膜厚 43
5.1.3 純P3HT元件之元件製備 45
5.2 導入TiO2奈米顆粒 48
5.2.1 混摻TiO2之光學性質 49
5.2.2 TiO2分散度之探討 52
5.2.3 TiO2混摻濃度控制 55
5.2.4 表面修飾對元件效率的影響 58
5.3 結論 61
第六章 熱處理與元件表現 62
6.1 退火對純P3HT元件的影響 62
6.2 退火對TiO2/P3HT混摻元件的影響 64
6.3 退火的材料分析 66
6.3.1 P3HT的熱分析DSC 66
6.3.2 退火之AFM分析 67
6.3.3 退火之吸收光譜影響 71
6.3.4 退火之PL的影響 74
6.3.5退火之XRD分析 75
6.3.6載子飛行時間(Time-of-flight)之量測 83
6.4 結論 86
第七章 TiO2的長短控制與元件效率之表現 87
7.1 改變TiO2大小對元件製成的影響 87
7.1.1 5×15nm TiO2 之原件製備 88
7.1.2 5×7nm TiO2之原件製備 90
7.1.3混摻大小TiO2元件效率之討論 92
7.2 載子分離效應 94
7.3 載子傳導效應 97
7.4 結論 100
第八章 附錄 101
8.1 元件製備 101
8.1.1 試片準備 101
8.1.2 溶劑配製 102
8.1.3 電極蒸鍍過程 103
8.2實驗儀器介紹 104
8.2.1 PL(Photoluminescence)光學之量測 104
8.2.2元件效率的量測 105
8.3 Reference 106
dc.language.isozh-TW
dc.title有機無機混摻薄膜太陽能電池之光電特性研究zh_TW
dc.titleHybrid P3HT/TiO2 Nanorods Bulk Heterojunction Solar Cellsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林唯芳,吳季珍,陳學禮
dc.subject.keyword二氧化鈦,有機太陽能電池,zh_TW
dc.subject.keywordTiO2,P3HT,solar cell,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2007-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
4.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved