Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29135
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張培仁
dc.contributor.authorWan-Chun Chuangen
dc.contributor.author莊婉君zh_TW
dc.date.accessioned2021-06-13T00:42:12Z-
dc.date.available2009-08-02
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-23
dc.identifier.citation參考文獻
[1] P. M. Osterberg and S. D. Senturia, 'M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures,' Journal of Microelectromechanical Systems, vol. 6, pp. 107-118, 1997.
[2] R. L. Mullen, M. Mehregany, M. P. Omar, and W. H. Ko, 'Theoretical modeling of boundary conditions in microfabricated beams,' Proceeding of the IEEE MEMS, Nara, Japan, pp. 154-159, 1991.
[3] Q. Meng, M. Mehregany, and R. L. Mullen, 'Theoretical modeling of microfabricated beams with elastically restrained supports,' Journal of Microelectromechanical Systems, vol. 2, pp. 128-137, 1993.
[4] M. Lishchynska, N. Cordero, and O. Slattery, 'State of the art in prediction of mechanical behaviour of microsystems,' Institute of Electrical and Electronics Engineers Inc., Brussels, Belgium, pp. 287-294, 2004.
[5] M. Lishchynska, N. Cordero, and O. Slattery, 'Development of behavioural models for mechanically loaded microcantilevers and beams,' Analog Integrated Circuits and Signal Processing, vol. 44, pp. 109-118, 2005.
[6] M. Lishchynska, N. Cordero, O. Slattery, and C. O'Mahony, 'Evaluation of spring constant in plates with straight suspensions,' Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems inc, Berlin, Germany, pp. 263-268, 2005.
[7] M. Lishchynska, C. O'Mahony, O. Slattery, and R. Behan, 'Comprehensive spring constant modelling of tethered micromechanical plates,' Journal of Micromechanics and Microengineering, vol. 16, pp. 61-67, 2006.
[8] T. J. Kenji Miyamoto, Koji Sugano, Osamu Tabata, and Toshiyuki Tsuchiya 'MECHANICAL CALIBRATION OF MEMS SPRING WITH 0.1-μN FORCE RESOLUTION,' 2007 IEEE International Micro Electro Mechanical Systems (MEMS) Conference, Kobe, Japan, pp. 227-230, 2007.
[9] X. Yang, F. M. Siu, and Y. C. Tai, 'Strength of surface micromachined diaphragms,' MRS Spring Meeting, San Francisco, CA, USA, pp. 93-97, 1998.
[10] L. V. Ngo, 'Design, Analysis, and Fabrication of Surface Micromachined Beam Without Step-up Spring Effect,' USA: UNIVERSITY OF CALIFORNIA-Master Dissertation, 1996.
[11] J. J. Y. Gill, L. V. Ngo, P. R. Nelson, and C. J. Kim, 'Elimination of extra spring effect at the step-up anchor of surface-micromachined structure,' Journal of Microelectromechanical Systems, vol. 7, pp. 114-121, 1998.
[12] H. C. Tsai, 'Characterization of Mechanical Properties of Thin films Using Micromachined Structures,' Taiwan: National Tsing Hua University-Ph.D. Dissertation 2003.
[13] J. W. Wittwer, 'Simulation-Based design under uncertainty for complaiant microelectromechanical systems,' Utah,USA: Brigham Young University-Ph.D. Dissertation, 2005.
[14] O. Akar, T. Akin, and K. Najafi, 'A wireless batch sealed absolute capacitive pressure sensor,' Sensors and Actuators, A: Physical, vol. 95, pp. 29-38, 2001.
[15] S. D. Senturia, Microsystem Design. Boston MA: Kluwer, 2001.
[16] P. Woias, 'Micropumps - Summarizing the first two decades,' Proceeding of the SPIE, San Francisco, CA, United States, pp. 39-52, 2001.
[17] S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka, and M. Atobe, 'High resolution, electrostatically-driven commercial inkjet head,' Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 793-798, 2000.
[18] C. T. C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, 'Micromachined devices for wireless communications,' Proceedings of the IEEE, vol. 86, pp. 1756-1768, 1998.
[19] H. A. C. Tilmans and R. Legtenberg, 'Electrostatically driven vacuum-encapsulated polysilicon resonators part II. theory and performance,' Sensors and Actuators, A: Physical, vol. 45, pp. 67-84, 1994.
[20] P. Osterberg, H. Yie, X. Cai, J. White, and S. Senturia, 'Self-consistent simulation and modeling of electrostatically deformed diaphragms,' Proceedings of the IEEE Micro Electro Mechanical Systems, pp. 28-32, 1994.
[21] R. K. Gupta, P. M. Osterberg, and S. D. Senturia, 'Material property measurements of micromechanical polysilicon beams,' Proceeding of the SPIE, Austin, TX, USA, pp. 39-45, 1996.
[22] R. K. Gupta, 'Electrostaic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems,' MA, USA: Massachusetts Institute of Technology-Ph.D. Dissertation, 1997.
[23] S. Pamidighantam, R. Puers, K. Baert, and H. A. C. Tilmans, 'Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions,' Journal of Micromechanics and Microengineering, vol. 12, pp. 458-464, 2002.
[24] C. O'Mahony, M. Hill, R. Duane, and A. Mathewson, 'Analysis of electromechanical boundary effects on the pull-in of micromachined fixed-fixed beams,' Journal of Micromechanics and Microengineering, vol. 13, pp. 75-80, 2003.
[25] M. Lishchynska, N. Cordero, O. Slattery, and C. O'Mahony, 'Modelling electrostatic behaviour of microcantilevers incorporating residual stress gradient and non-ideal anchors,' Journal of Micromechanics and Microengineering, vol. 15, pp. 10-14, 2005.
[26] Y. C. Hu, 'Closed form solutions for the pull-in voltage of micro curled beams subjected to electrostatic loads,' Journal of Micromechanics and Microengineering, vol. 16, pp. 648-655, 2006.
[27] Y. C. Hu, C. S. Wei, 'An analytical model considering the fringing fields for calculating the pull-in voltage of micro curled cantilever beams,' Journal of Micromechanics and Microengineering, vol. 17, pp. 61-67, 2007.
[28] K. E. Petersen and C. R. Guarnieri, 'YOUNG'S MODULUS MEASUREMENTS OF THIN FILMS USING MICRO MECHANICS,' Journal of Applied Physics, vol. 50, pp. 6761-6766, 1979.
[29] L. M. Zhang, D. Uttamchandani, and B. Culshaw, 'Measurement of the mechanical properties of silicon microresonators,' Sensors and Actuators, A: Physical, vol. 29, pp. 79-84, 1991.
[30] L. Kiesewetter, J. M. Zhang, D. Houdeau, and A. Steckenborn, 'Determination of Young's moduli of micromechanical thin films using the resonance method,' Sensors and Actuators, A: Physical, vol. 35, pp. 153-159, 1992.
[31] J. J. Vlassak and W. D. Nix, 'New bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films,' Journal of Materials Research, vol. 7, pp. 3242-3249, 1992.
[32] K. Najafi and K. Suzuki, 'Novel technique and structure for the measurement of intrinsic stress and Young's modulus of thin films,' Proceeding of the IEEE MEMS, Salt Lake City, UT, USA, pp. 96-97, 1989.
[33] X. Q. Sun, Z. Li, X. Zheng, and L. Liu, 'Study of fabrication process of a micro electrostatic switch and its application to a micromechanical V-F converter,' Sensors and Actuators, A: Physical, vol. 35, pp. 189-192, 1993.
[34] Q. Zou, Z. Li, and L. Liu, 'New methods for measuring mechanical properties of thin films in micromachining: beam pull-in voltage (VPI) method and long beam deflection (LBD) method,' Sensors and Actuators, A: Physical, vol. 48, pp. 137-143, 1995.
[35] W. N. Sharpe, Jr., B. Yuan, and R. L. Edwards, 'New technique for measuring the mechanical properties of thin films,' Journal of Microelectromechanical Systems, vol. 6, pp. 193-199, 1997.
[36] S. Johansson, L. Tenerz, and J. Tiren, 'Fracture testing of silicon microelements in situ in a scanning electron microscope,' Journal of Applied Physics, vol. 66, pp. 4799-4803, 1988.
[37] C. Serre, P. Gorostiza, A. Perez-Rodriguez, F. Sanz, and J. R. Morante, 'Measurement of micromechanical properties of polysilicon microstructures with an atomic force microscope,' Sensors and Actuators, A: Physical, vol. 67, pp. 215-219, 1998.
[38] C. Serre, A. Perez-Rodriguez, J. R. Morante, P. Gorostiza, and J. Esteve, 'Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope,' Sensors and Actuators, A: Physical, vol. 74, pp. 134-138, 1999.
[39] T. Chudoba, N. Schwarzer, F. Richter, and U. Beck, 'Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter,' Thin Solid Films, vol. 377-378, pp. 366-372, 2000.
[40] L. Riester, P. J. Blau, E. Lara-Curzio, and K. Breder, 'Nanoindentation with a Knoop indenter,' Thin Solid Films, vol. 377-378, pp. 635-639, 2000.
[41] R. Modlinski, and I. D. Wolf 'Micro-Tensile Tests to Characterize MEMS,' 2007 IEEE International Micro Electro Mechanical Systems (MEMS) Conference Kobe, Japan, pp. 255-261, 2007.
[42] H. Guckel, D. W. Burns, H. A. C. Tilmans, D. W. DeRoo, and C. R. Rutigliano, 'Mechanical properties of fine grained polysilicon - the repeatability issue,' Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, SC, USA, pp. 96-99, 1988.
[43] H. Guckel, D. W. Burns, H. A. C. Tilmans, C. C. G. Visser, D. W. DeRoo, T. R. Christenson, P. J. Klomberg, J. J. Sniegowski, and D. H. Jones, 'Processing conditions for polysilicon films with tensile strain for large aspect ratio microstructures,' Hilton Head, SC, USA, pp. 51-56, 1988.
[44] H. Guckel, D. W. Burns, C. C. G. Visser, H. A. C. Tilmans, and D. Deroo, 'FINE-GRAINED POLYSILICON FILMS WITH BUILT-IN TENSILE STRAIN,' IEEE Transactions on Electron Devices, vol. 35, pp. 800-801, 1988.
[45] H. Guckel, D. Burns, C. Rutigliano, E. Lovell, and B. Choi, 'Diagnostic microstructures for the measurement of intrinsic strain in thin films,' Journal of Micromechanics and Microengineering, vol. 2, pp. 86-95, 1992.
[46] W. Fang and J. A. Wickert, 'Post buckling of micromachined beams,' Journal of Micromechanics and Microengineering, vol. 4, pp. 116-122, 1994.
[47] W. Fang and J. A. Wickert, 'Comments on measuring thin-film stresses using bi-layer micromachined beams,' Journal of Micromechanics and Microengineering, vol. 5, pp. 276-281, 1995.
[48] W. Fang and J. A. Wickert, 'Determining mean and gradient residual stresses in thin films using micromachined cantilevers,' Journal of Micromechanics and Microengineering, vol. 6, pp. 301-309, 1996.
[49] J. A. Schweitz and F. Ericson, 'Evaluation of mechanical materials properties by means of surface micromachined structures,' Sensors and Actuators, A: Physical, vol. 74, pp. 126-133, 1999.
[50] J. Wylde and T. J. Hubbard, 'Elastic properties and vibration of micro-machined structures subject to residual stresses,' Canadian Conference on Electrical and Computer Engineering, vol. 3, pp. 1674-1679, 1999.
[51] R. C. Hibbeler, Mechanics of Materials. USA: Prentice Hall, 1997.
[52] Y. Y. Hsieh, Elementary Theory of Structures. Taiwan: Wen Yuan 1965.
[53] W. H. Chang, 'ANALYTICAL IC METAL-LINE CAPACITANCE FORMULAS,' IEEE Transactions on Microwave Theory and Techniques, vol. 24, pp. 608-611, 1976.
[54] N. P. Vandermeijs and J. T. Fokkema, 'Vlsi Circuit Reconstruction from Mask Topology,' Integration-the Vlsi Journal, vol. 2, pp. 85-119, 1984.
[55] D. J. Gorman, Free Vibration Analysis of Beams and Shafts. New York, USA: John Wiley & Sons, 1975.
[56] M. R. Spiegel, Mathematical Handbook of Formulas and Tables. New York,USA: McGraw-Hill, 1987.
[57] S. Chowdhury, M. Ahmadi, and W. C. Miller, 'Pull-in voltage study of electrostatically actuated fixed-fixed beams using a VLSI on-chip interconnect capacitance model,' Journal of Microelectromechanical Systems, vol. 15, pp. 639-651, 2006.
[58] P. M. Osterberg, 'Electrostatically actuated micro electro -mechanical test structures for material property measurements,' MA, USA: Massachusetts Institute of Technology-PhD Dissertation, 1995.
[59] K. E. Petersen, 'DYNAMIC MICROMECHANICS ON SILICON: TECHNIQUES AND DEVICES,' IEEE Transactions on Electron Devices, vol. 25, pp. 1241-1250, 1978.
[60] R. E. D. Bishop and D. C. Johnson, The Mechanics of Vibration Cambridge University Press, 1960.
[61] M. Chinmulgund, R. B. Inturi, and J. A. Barnard, 'Effect of Ar gas pressure on growth, structure, and mechanical properties of sputtered Ti, Al, TiAl, and Ti3Al films,' Thin Solid Films, vol. 270, pp. 260-263, 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29135-
dc.description.abstract本研究提出具非理想邊界、雜散電場、及殘餘應力之微結構吸附電壓解析模型,此模型成功的模擬實際的非線性機電耦合系統,並研發出一套適用於晶圓級檢測的全電信號的薄膜材料性質檢測方法,以檢測微結構之楊氏模數與殘留應力。以尤拉樑(Euler’s beam)模型以及最小能量法(minimum energy method)為理論基礎,推導出具初始應力之微橋狀樑在承受靜電負載下的吸附電壓的解析解,並可藉由量測兩組長度不同的微結構之吸附電壓,反算薄膜材料之楊氏模數與殘留應力。本研究以單晶矽、複晶矽、及濺鍍鋁作為測試結構材料,比較吸附電壓解析解與模擬、實驗數值的誤差,此三種不同測試結構吸附電壓誤差均在5%以內,在萃取薄膜材料機械性質方面,楊氏模數與殘留應力的誤差均在5%以內。本研究所提出之微結構的吸附電壓解析模型,其物理意義明確,可看出殘留應力、非理想邊界、雜散電場、及結構撓性等各物理量對吸附電壓的影響,因此可提供元件設計者作為設計參考指標,而所建立之全電性信號薄膜材料性質檢測技術,可利用現有之半導體量測設備,於晶圓製程線上進行即時的量測與監控,適合大量應用在半導體與微機電製程中。zh_TW
dc.description.abstractThis paper derives an approximate analytical solution to the pull-in voltage of micro bridge with non-ideal boundaries, fringing field capacitance and residual stresses. Besides, this paper also presents a novel and high-precision algorithm and method for extracting the Young’s modulus and residual stress of thin films through the pull-in voltage of micro test-key at wafer level. The approximate analytical solution is derived based on the Euler’s beam model and the minimum energy method. We derive a closed form solution for the pull-in voltages of micro fixed-fixed beam subjected to electrostatic loads and initial stress. Then one can use the aforesaid closed form solution of the pull-in voltage to extract the Young’s modulus and residual stress of the test structures. The test cases include single crystal silicone, poly-silicon, and sputtered aluminum. The accuracy of the present approximate analytical solution is verified through comparing with simulation results of commercial packages as well as experimental measured ones. The deviation of the present approximate analytical solution is within 5% for wide beam and narrow beam in small deflection regime. The deviation of the extracted Young’s modulus and residual stress are both within 5%. The present solution is fully analytical and highly accurate for device design. It can give us explicit physical meaning about how the residual stress, elastic boundary, structural flexibility, fringing field capacitance to affect pull-in voltage. The present method is expected to be applicable to the wafer-level testing in micro-device manufacture and compatible with the wafer-level testing in IC industry since the test and pick-up signals are both electrical.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:42:12Z (GMT). No. of bitstreams: 1
ntu-96-R94543025-1.pdf: 1519657 bytes, checksum: fbe064a7c9a6a987899c33106343827a (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
論文口試委員審定書
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xii
第1章 導論 1
1.1 研究動機 1
1.2 文獻回顧與探討 3
1.2.1 微結構之彈性邊界 4
1.2.2 微結構之吸附電壓 9
1.2.3 薄膜材料之機械性質參數萃取 12
1.2.3.1 薄膜材料之楊氏模數萃取 13
1.2.3.2 薄膜材料之殘留應力萃取 16
1.3 論文架構 20
第2章 微結構之彈性邊界模型 22
2.1懸臂樑之彈性邊界模型 22
2.2微橋狀樑之彈性邊界模型 24
2.3 理論驗證 27
2.3.1 懸臂樑之彈性邊界模型理論驗證 27
2.3.2 微橋狀樑之彈性邊界模型理論驗證 34
第3章 靜電結構之吸附電壓的解析解 40
3.1 微結構系統能量式 40
3.2 吸附電壓之解析解 44
3.2.1 四階吸附電壓解析解 46
3.2.2 三階吸附電壓解析解 49
3.3 理論驗證 52
3.3.1 (100)單晶矽 52
3.3.2 (110)單晶矽 54
3.3.3 複晶矽 55
3.3.4 與相關文獻結果比較 57
第4章 薄膜材料之機械性質參數萃取 60
4.1 相關技術簡介 60
4.2 Fast M-TEST 63
4.3 Fast M-TEST與M-TEST之比較 65
4.4 Fast M-TEST之驗證 66
4.4.1 (100)單晶矽 66
4.4.2 (110)單晶矽 67
4.4.3 複晶矽 68
第5章 實驗驗證 70
5.1 測試結構的製程 70
5.2 吸附電壓量測原理 75
5.3 靜電結構之吸附電壓實驗結果 76
5.3.1 實驗一 76
5.3.2 實驗二 77
5.4 Fast M-TEST之實驗驗證 78
5.4.1 實驗一 78
5.4.2 實驗二 78
5.5 實驗結果討論 79
第6章 結論與未來展望 80
6.1 結論 80
6.2 未來展望 81
參考文獻 82
dc.language.isozh-TW
dc.subject微機電系統zh_TW
dc.subject非理想邊界zh_TW
dc.subject吸附電壓zh_TW
dc.subject楊氏模數殘留應zh_TW
dc.subjectnon-ideal boundaryen
dc.subjectresidual stressen
dc.subjectYoung’s modulusen
dc.subjectpull-in voltageen
dc.subjectMEMSen
dc.title具彈性邊界微結構之電彈性質研究zh_TW
dc.titleStudy on the Electromechanical Behavior of Microstructures with Elastic Boundaryen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡毓忠,康尚文,李其源
dc.subject.keyword非理想邊界,吸附電壓,楊氏模數殘留應,微機電系統,zh_TW
dc.subject.keywordnon-ideal boundary,pull-in voltage,Young’s modulus,residual stress,MEMS,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2007-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved