請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29018完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉?睿,陳明汝 | |
| dc.contributor.author | Ting-Yu Lee | en |
| dc.contributor.author | 李庭羽 | zh_TW |
| dc.date.accessioned | 2021-06-13T00:35:08Z | - |
| dc.date.available | 2016-08-08 | |
| dc.date.copyright | 2011-08-08 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-04 | |
| dc.identifier.citation | Abbas, A. K. and A. H. Lichtman. 2009. BASIC IMMUNOLOGY. Functions and Disorders of the Immune System. Elsevier. Philadelphia. 3rd ed.
Aboderin, F. I. and V. O. Oyetayo. 2006. Haematological studies of rats fed different doses of probiotic, Lactobacillus plantarum, isolated from fermenting corn slurry. Pak. J. Nutr. 5: 102-105. Ahrne, S. and M. L. J. Hagslatt. 2011. Effect of lactobacilli on paracellular permeability in the gut. Nutr. 3: 104-117. Amrouche T, Y. Boutin, and I. Fliss. I 2006a. Effects of bifidobacterial cytoplasm peptide and protein fractions on mouse lymphocyte proliferation and cytokine production. Food Agr. Immunol. 17: 29-42. Amrouche, T., Y. Boutin, G. Prioult, and I. Fliss. 2006b. Effects of bifidobaterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production. Int. Dairy J. 16: 70-80. Asahara, T., K. Shimizu, K. Nomoto, T. Hamabata, A. Ozawa, and Y. Takeda. 2004. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect. Immun. 72: 2240-2247. Balcazar, J. L., D. Vendrell, I. Blas, I. Ruiz-Zarzuela, O. Girones, and J. L. Muzquiz. 2007. In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Vet. Microbiol. 122: 373–380. Baumler, A. J., R. M. Tsolis, and F. Heffron. 1996. Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect. Immun. 64: 1862–1865. Baumgart, D. and S. R. Carding. 2007. Inflammatory bowel disease: cause and immunobiology. Lancet 369: 1627-1640. Bianchi, M. A., D. Del Rio, N. Pellegrini, G. Sansebastiano, E. Neviani, and F. Brighenti. 2004. A fluorescence-based method for the detection of adhesive properties of lactic acid bacteria to Caco-2 cells. Lett. Appl. Microbiol. 39: 301-305. Bielaszewska, M. and H. Karch. 2005. Consequences of enterohemorrhagic Escherichia coli infection for the vascular endothelium. Thromb. Haemost. 94: 312-318. Calder, P. C. 2007. Immunological parameters: what do they mean? J. Nutr. 137: 773-780. Cirillo, D. M., R. H. Valdivia, D. M. Monack, and S. Falkow. 1998. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 30: 175–88. Chon, H. and B. Choi. 2010. The effects of a vegetable-derived probiotic lactic acid bacterium on the immune response. Microbiol. Immunol. 54: 228-236. Chon, H., B. Choi, E. Lee, S. Lee, and G. Jeong. 2009. Immunomodulatory effects of specific bacterial components of Lactobacillus plantarum KFCC11389P on the murine macrophage cell line RAW 264.7. J. Appl. Microbiol. 107: 1588-1597. Choma, C. and P. E. Granum. 2002. The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. FEMS Microbiology Letters. 217: 115–119. Croxen, M. A. and B. B. Finlay. 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nature Rev. Microbiol. 8: 26-38. Dahan, S., G. Dalmasso, V. Imbert, J. F. Peyron, P. Rampal, and D. Czerucka. 2003. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect. Immun. 71: 766–773. D’ Aoust, J. Y. 2001. Salmonella. In “Guide to Foodborne Pathogens.” Ed. R. Labbe, and S. Garcia, pp. 163-191. John Wiley and Sons, New York, NY. Dean, L. 2006. Blood Groups and Red Cell Antigens. NCBI. Bethesda. Md. USA. Dean-Nystrom, E. A., B. T. Bosworth, H. W. Moon, and A. O’Brien. 1998. Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect. Immun. 66: 4560-4563. Donnenberg, M. S., S. Tzipori, M. L. McKee, A. D. O’Brien, J. Alroy, and J. B. Kaper. 1993. The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. J. Clin. Invest. 92: 1418–1424. Donnenberg, M. S., C. O. Tacket, S. P. James, G. Losonsky, J. P. Nataro, S. S. Wasserman, J. B. Kaper, and M. M. Levine. 1993. Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J. Clin. Invest. 92: 1412–1417. Duc, L. H., H. A. Hong, N. Fairweather, E. Ricca, and S. M. Cutting. 2003. Bacterial spores as vaccine vehicles. Infect. Immunol. 71: 2810–2818. Duc, L.H., T. C. Dong, N. A. Logan, A. D. Sutherland, J. Taylor, and S. M. Cutting. 2005. Cases of emesis associated with bacterial contamination of an infant breakfast cereal product. Int. J. Food Microbiol. 102: 245–251. Duerkop, B. A., S. Vaishnava, and L. V. Hooper. 2009. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31: 368–376. Eaton, K. A., D. I. Friedman, G. J. Francis, J. S. Tyler, V. B. Young, J. Haeger, G. Abu-Ali, and T. S. Whittam. 2008. Pathogenesis of renal disease due to enterohemorrhagic Escherichia coli in germ-free mice. Infect. Immun. 76: 3054-3063. Eaton, K. A., A. Honkala, T. A. Auchtumg, and R. A. Britton. 2011. Probiotic Lactobacillus reuteri ameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infect. Immun. 79: 185-191. FAO/WHO 2002. Joint FAO/WHO (Food and Agriculture Organization/ World Health Organization) working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada. Feng, P. 2001. Escherichia coli. In “Guide to Foodborne Pathogens.” Ed. R. Labbe, and S. Garcia, pp. 143-162. John Wiley and Sons, New York, NY. Forchielli, M. L., and W. A. Walker. 2005. The role of gut-associated lymphoid tissues and mucosal defence. Br. J. Nutr. 93: S41–S48. Gagnon, M., E. E. Kheadr, N. Dabour, D. Richard, and I. Fliss. 2006. Effect of Bifidobaterium thermacidophilum probiotic feeding on enterohemorrhagic Escherichia coli O157:H7 infection in BALB/c mice. Int. J. Food Microbiol. 111: 26-33. Garcia-del, P. F., J. W. Foster, and B. B. Finlay. 1993. Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect. Immun. 61: 4489–4492. Galyov, E. E., M. W. Wood, R. Rosqvist, P. B. Mullan, P. R. Watson, S. Hedges, and T. S. Wallis. 1997. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25: 903–12. Gismondo, M. R., L. Drago, and A. Lombardi. 1999. Review of probiotics available to modify gastrointestinal flora. Int. J. Antimicrob. Agents, 12: 287–292. Gollop, N. V. Zakin, and Z. G. Weinberg. 2005. Antibacterial activity of lactic acid bacteria included in inoculants for silage and in silages treated with these inoculants. J. Appl. Microbiol. 98: 662– 666. Granum, P. E. and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbio. Lett. 157: 223– 228. Granum, P. E. 2002. Bacillus cereus and food poisoning. In: Berkeley, R., M. Heyndrickx, N. A. Logan, and P. Vos. (Eds.). Applications and systematics of Bacillus and relatives. Blackwell Science Oxford. 37– 46. Groisman, E. A. and H. Ochman. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87: 791–94. Hara-Kaonga, B. and T. G. Pistole. 2007. A dual fluorescence flow cytometric analysis of bacterial adherence to mammalian host cells. J. Microbiol. Methods. 69: 37-43. Hensel, M., J. E. Shea, S. R. Waterman, R. Mundy, T. Nikolaus, G. Banks, A. Vazquez-Torres, C. Gleeson, F. C. Fang, and D. W. Holden. 1998. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30: 163–174. Hong, H. A., J. M. Huang, R. Khaneja, L. V. Hiep, M. C. Urdaci, and S. M. Cutting. 2008. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J. Appl. Microbiol. 105: 510-520. Hong, H. A., L. H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 299: 813-835. Hooper, L. V. and A. J. Macpherson. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol. 10: 159–169. Hsueh, H. Y., P. Y. Yuen, B. Yu, X. Zhao, and J. R. Liu. 2010. Expression of Lactobacillus reuteri Pg4 collagen-binding protein gene in Lactobacillus casei ATCC 393 increase its adhesion ability to Caco-2 cells. J. Agric. Food Chem. 58: 12182-12191. Im, E., Y. J. Choi, C. Pothoulakis, and S. H. Rhee. 2009. Bacillus polyfermenticus ameliorates colonic inflammation by promoting cytoprotective effects in colitic mice. J. Nutr. 139: 1848-1854. Ishibashi, N. and S. Yamazaki. 2001. Probiotics and safety. Am. J. Clin. Nutr. 73: 465S-470S. Isticato, R., G. Cangiano, H. T. Tran, A. Ciabattini, D. Medaglini, M. R. Oggioni, M. De Felice, G. Pozzi, and E. Ricca. 2001. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 183: 6294–6301. Jay, J. M. 2000. Modern Food Microbiology. Aspen Publications, Gaithersburg. MD. Janeway, C. A. Jr, P. Travers, M. Walport, and M. Shlomchik. 2005. Immunobiology: The Immune System in Health and Disease. 6th ed. New York: Garland Publishing. Johansson, M. E., M. Phillipon, J. Petersson, A. Velcich, L. Holm, and G. C. Hansson. 2008. The inner of two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 105: 15064-15069. Johnson-Henry, K. C., K. A. Donato, G. Shen-Tu, M. Gordanpour, and P. M. Sherman. 2008. Lactobacillus rhamnosus strain GG prevents enterhemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect. Immun. 76: 1340-1348. Joux, F. and P. Lebaron. 2000. Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microb. Infect. 2: 1523– 1537. Kaper, J. B., J. P. Nataro, and H. L. Mobley. 2004. Pathogenic Escherichia coli. Nature Rev. Microbiol. 2: 123-140. Karpman, D., H. Council, M. Svensson, F. Scheutz, P. Aim, and C. Svanborg. 1997. The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J. Infect. Dis. 175: 611-620. Kaur, I. P., A. Kuhad, A. Garg, and K. Chopra. 2009. Probiotics: delineation of prophylactic and therapeutic benefits. J. Med. Food 12: 219–235. Kenny, B., R. DeVinney, M. Stein, D. J. Reinscheid, E. A. Frey, and B. B. Finlay.1997. Enteropathogenic E. coli (EPEC) transfers its receptors for intimate adherence into mammalian cells. Cell. 91: 511-520. Kindt, T. J., R. A. Goldsby, B. A. Osborne, and J. Kuby. 2007. Kuby Immunology. 6th ed. W. H. Freeman and Company. New York. NY. Kontoyiannis, D., A. Kotlyarov, E. Carballo, L. Alexopoulou, P. J. Blackshear, M. Gaestel, R. Davis, R. Flavell, and G. Kollias. 2001. Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J. 20: 3760–3770. LeBlanc, J., I. Fliss, and C. Matar. 2004. Induction of a humoral immune response following an Escherichia coli O157:H7 infection with an immunomodulatory peptidic fraction derived from Lactobacillus helveticus-fermented milk. Clin. Diagn. Lab. Immunol. 11: 1171-1181. le Duc, L. H., H. A. Hong, H. S. Atkins, H. C. Flick-Smith, Z. Durrani, S. Rijpkema, R. W. Titball, and S. M. Cutting. 2007. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25: 346–355. Lee, K. H., K. D. Jun, W. S. Kim, and H. D. Paik. 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146–151. Lilly, D. M. and R. H. Stillwell. 1965. Probiotics: Growth-promoting factors produced by microorganisms. Science. 147: 747–748. Liong, M. T. 2008. Safety of probiotics: translocation and infection. Nutr. Rev. 66: 192–202. Loftus, E. V. Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 126: 1504-1517. Ma, T. Y., M. A. Biovin, D. Ye, A. Pedram, and H. M. Said. 2005. Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am. J. Physiol. Gastrointest. Liver Physiol. 288: G422-G430. Ma, T. Y., G. K. Iwamoto, N. T. Hoa, V. Akotia, A. Pedram, M. A. Biovin, and H. M. Said. 2004. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am. J. Physiol. Gastrointest. Liver Physiol. 286: G367-G376. Macpherson, A. J., K. D. McKoy, F. E. Johansen, and P. Brandtzaeg. 2008. The immune geography of IgA induction and function. Mucosal Immunolgy 1: 11–22. Macpherson, A. J., and T. Uhr. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665. Marchant, A., C. BruynsO, P. Vandenabeele, M. Ducarme, C. Gerard, A. Delvaux, D. D. Groote, D. Abramowicz, T. Velu, and M. Goldman. 1994. Interleukin-10 controls interferon-γ and tumor necrosis factor production during experiment endotoxemia. Eur. J. Immunol. 24: 1167-1171. Martins, F. S., G. Dalmasso, R. M. E. Arantes, A. Doye, E. Lemichez, P. Lagadec, V. Imbert, J. F. Peyron, P. Rampal, J. R. Nicoli, and D. Czerucka. 2010. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS ONE 5: e8925. Mason, D. J., S. Shanmuganathan, C. Mortimer, and V. A. Gant. 1998. A fluorescent Gram stain for flow cytometry and epifluorescence microscopy. Appl. Environ. Microbiol. 64: 2681–2685. Mattar, A. F., D. H. Teitelbaum, R. A. Drongowski, R. A. Drongowski, F. Yongyi, C. M. Harmon, and A. G. Coran. 2002. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatric Surg. Int. 18: 586-590. Mazza, P. 1994. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll. Chim. Farm. 133: 3-118. Meier R. and H. Lochs. 2007. Pre- and probiotics. Ther Umsch. 64: 161–169. Mennigen, R., K. Nolte, E. Rijcken, M. Utech, B. Loeffler, N. Senninger, and M. Bruewer. 2009. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296: G1140-G1149. McNamara, B. P., A. Koutsouris, C. B. O’Connell, J. P. Nougayrede, M. S. Donnenberg, and G. Hecht. 2001. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107: 621-629. Miller, S. I. and D. A. Pegues. 2000. Salmonella species, including Salmonella typhi. In Principles and Practice of Infectious Diseases. ed. G. L. Mandell, J. E. Bennett, and R. Dolin. 2:2344–63. Philadelphia: Churchill Livingstone. 2 vols. 5th ed. Miyauchi, E., H. Morita, and S. Tanabe. 2009. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J. Dairy Sci. 92: 2400-2408. Mohawk, K. L. and A. D. O'Brien. 2011. Mouse models of Escherichia coli O157:H7 infection and Shiga toxin injection. J. Biomed. Biotechnol. 2011: 1-17. Moore, K. W., A. O'Garra, M. de Waal, P. Vieira, and T. R. Mosmann. 1993. Interleukin-10. Annu. Rev. Immunol. 11: 165-190. Nagano, K., K. Taguchi, T. Hara, S. I. Yokoyama, K. Kawada, and H. Mori. 2003. Adhesion and colonization of enterohemorrhagic Escherichia coli O157:H7 in cecum of mice. Microbiol. Immunol. 47: 125-132. Nataro, J. P. and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11-142-201. Ohl, M.E. and S. I. Miller. 2001. Salmonella: a model for bacterial pathogenesis. Annu. Rev. Med. 52: 259–74. Ohland, C. and W. Macnaughton. 2010. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 298(6): 807-819. Parker, R.B. 1974. Probiotics, the other half of the antibiotic story. Anim. Nutr. Health. 29: 4–8. Park, J. H., J. I. Um, B. J. Lee, J. S. Goh, S. Y. Park, W. S. Kim, and P. H. Kim. 2002. Encapsulated Bifidobaterium bifidum potentiates intestinal IgA production. Cell. Immunol. 219: 22-27. Philpott, D. J., D. M. McKay, W. Mak, M. H. Perdue, and P. M. Sherman. Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect Immun 1998; 66:1680–1687. Pinchuk, I. V., P. Bressollier, B. Verneuil, B. Fenet, I. B. Sorokulova, F. Megraud, and M. C. Urdaci. 2001. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob. Agents Chemother. 45: 3156–3161. Podolsky, D. K. 2002. Inflammatory bowel disease. N. Engl. J. Med. 347: 417–429. Pruimboom-Brees, I. M., T. W. Morgan, M. R. Ackermann, E. D. Nystrom, J. E. Samuel, N. A. Cornick, and H. W. Moon. 2000. Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proc. Natl. Acad. Sci. USA. 97: 10325-10329. Putaala, H., T. Salusjarvi, M. Nordstrom, M. Saarinen, A. C. Ouwehand, E. B. Hansen, and N. Rautonen. 2008. Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression. Res. Microbiol. 159: 692-698. Raschke, W. C., S. Baird, P. Ralph, and I. Nakoinz. 1978. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell. 15: 261-267. Rodriguez-Juan, C., M. Perez-Blas, A. P. Valeri, N. Aguilera, A. Arnaiz-Villena, A. Pacheco-Castro, and J. M. Martin-Villa. 2001. Cell surface phenotype and cytokine secretion in Caco-2 cell cultures: increased RANTES production and IL-2 transcription upon stimulation with IL-1beta . Tissue Cell 33: 570 – 579. Rolfe, R. D. 2000. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130: 396S-402S. Rowland, I. 1999. Probiotics and benefits to human health - the evidence in favour. Environ. Microbiol. 1: 375-376. Roxas, J. L., A. Koutsouris, A. Bellmeyer, S. Tesfay, S. Royan, K. Falzari, A. Harris, H. Cheng, K. J. Rhee, and G. Hecht. 2010. Enterohemorrhagic Escherichia coli alters murine intestinal epithelial tight junction protein expression and barrier function in a Shiga toxin independent manner. Lab. Invest. 90: 1152-1168. Round, J. L. and S. K. Mazmanian. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. 9: 313-323. Ryu, Y. H., J. E. Baik, J. S. Yang, S. S. Kang, J. Im, C. H. Yun, D. W. Kim, K. Lee, D. K. Chung, H. R. Ju, and S. H. Han. 2009. Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int. Immunol. 9: 127-133. Saarela, M., L. Lahteenmaki, R. Crittenden, S. Salminen, and T. Mattila-Sandholm. 2002. Gut bacteria and health foods-the European perspective. Int. J. Food Microbiol. 15: 99 –117. Sanchez, B., S. Arias, S. Chaignepain, and M. Denayrolles, J. M. Schmitter, P. Bressolier, and M. C. Urdaci. 2009. Identification of surface proteins involved in the adhesion of a probiotics Bacillus cereus strain to mucin and fibronectin. Microbiol. 155: 1708-1716. Sansonetti, P. J. 2004. War and peace at mucosal surfaces. Nat. Rev. Immunol.4: 953–964. Scholz-Ahrens, K. E., P. Ade, B. Marten, P. Weber, W. Timm, Y. Acil, C. C. Gluer, and J. Schrezenmeir. 2007. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr. 137: 838S–846S. Schuller, S., R. Heuschkel, F. Torrente, J. B. Kaper, and A. D. Phillips. 2007. Shiga toxin binding in normal and inflamed human intestinal mucosa. Microbes. Infect. 9: 35-39. Servin, A. L. 2004. Antagonistic activities of lactobacilli and bifidobateria against microbial pathogens. FEMS Microbiol. Rev. 28: 405-440. Servin, A. L. and M. H. Coconnier. 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res. Clin. Gastroenterol. 17: 741-754. Sethman, C. R., R. J. Doyle, and M. M. Cowan. 2002. Flow cytometric evaluation of adhesion of Streptococcus pyogenes to epithelial cells. J. Microbiol. Methods. 51: 35-42. Skjolaas, K. A., T. E. Burkey, S. S. Dritz, and J. E. Minton. 2006. Effects of Salmonella enterica serovar Typhimurium, or serovar Choleraesuis, Lactobacillus reuteri and Bacillus licheniformis on chemokine and cytokine expression in the swine jejunal epithelial cell line, IPEC-J2, Vet. Immunol. Immunopathol. 115: 295-308. Shu, Q. and H. S. Gill. 2001. A dietary probiotic (Bifidobaterium lactis HN019) reduces the severity of Escherichia coli O157:H7 infection in mice. Med. Microbiol. Immunol. 189: 147-152. Shu, Q. and H. S. Gill. 2002. Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20TM) against Escherichia coli O157:H7 infection in mice. FEMS Immunol. Med. Microbiol. 34: 59-64. Soccol, C. R., L. P. S. Vandenberghe, M. R. Spier, A. B. P. Medeiros, C. T. Yamaguishi, J. D. D. Lindner, A. Pandey, and V. Thomaz-Soccol. 2010. The potential of probiotics: a review. Food Technol. Biotech. 48: 413–434. Sorokulova, I. B., I. V. Pinchuk, M. Denayolles, I. G. Osipova, J. M. Huang, S. M. Cutting, and M. C. Urdaci. 2008. The safety of two Bacillus probiotic strains for human use. Dig. Dis. Sci. 53: 954-963. Suzuki, K., B. Meek, Y. Doi, M. Muramatsu, T. Chiba, T. Honjo, and S. Fagarasan. 2004. Aberrant expansion of segmented filamentous bacteria in IgA deficient gut. Proc. Natl. Acad. Sci. USA 101: 1981–1986. Steidler, L., W. Hans, L. Scote, S. Neirynck, F. Obermeier, W. Falk, W. Fiers, and E. Remaut. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355. Tsai, Y. T., P. C. Cheng, and T. M. Pan. 2010. Immunomodulating activity of Lactobacillus paracasei subsp. paracasei NTU 101 in enterohemorrhagic Escherichia coli O157H7-infected mice. J. Agirc. Food Chem. 58: 11265-11272. Urdaci, M. C. and I. Pinchuk. 2004. Antimicrobial activity of Bacillus probiotics In: Ricca E, Henriques AO, Cutting SM (eds). Bacterial spore formers: probiotics and emerging applications. Horizon Bioscience, Norfolk, UK, pp 171-182. Uzzau, S., D. J. Brown, T. Wallis, S. Rubino, G. Leori, S. Bernard, J. Casadesus, D. J. Platt, and J. E. Olsen. 2000. Host adapted serotypes of Salmonella enterica. Epidemiol. Infect. 125: 229–255. Vanderpool, C., F. Yang, and D. B. Polk. 2008. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel Dis.14: 1585-1596. Viswanathan, V. K., A. Koutsouris, S. Lukic, M. Pilkinton, I. Simonovic, M. Simonovic, and G. Hecht. 2004. Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function. Infect. Immun. 72: 3218–3227. Volanakis, J. E. and M. M. Frank. 1998. The Human Complement System in Health and Disease. New York: Marcel Dekker Inc. Walport, M. J. 2001. Complement. First of two part. N. Engl. J. Med. 344: 1058-1066. Watson, P.R., S. M. Paulin, A. P. Bland, P. W. Jones, and T. S. Wallis. 1995. Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. Infect. Immun. 63: 2743–54. Weston, S. A. and C. R. Parish. 1990. New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J. Immunol. Methods 133: 87-97. Wirtz, S., C. Neufert, B. Weigmann, and M. F. Neurath. 2007. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2: 541–546. Xavier, R. J. and D. K. Podolsky. 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 448: 427-434. Yang, H., A. Liu, M. Zhang, S. A. Ibrahim, Z. Pang, X. Leng, and F. Ren. 2009. Oral administration of live Bifidobaterium substrains isolated from centenarians enhances intestinal function in mice. Curr. Microbiol. 59: 439-445. Yi, P. J., C. K. Pai, and J. R. Liu. 2011. Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone. World J. Microbiol. Biotechnol. 27: 1035-1043. Zhou, J. S., Q. Shu, K. J. Rutherfurd, J. Prasad, M. J. Birtles, P. K. Gopal, and H. S. Gill. 2000. Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice. Int. J. Food. Microbiol. 56: 87-96. Zhou, Z., H. Xia, X. Hu, Y. Huang, Y. Li, L. Li, C. Ma, X. Chen, F. Hu, J. Xu, F. Lu, Z. Wu, and X. Yu. 2008. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26: 1817–1825. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29018 | - |
| dc.description.abstract | Bacillus為具有產孢能力的革蘭氏陽性菌,並且可當作益生菌來運用。根據先前的研究可知 Bacillus和其代謝產物可增強腸道相關淋巴組織之免疫反應。因此在本研究中,我們探討 B. licheniformis CK1是否可當作益生菌使用來改善腸道免疫系統。
於本研究中,首先藉由小鼠巨噬細胞株 RAW264.7 細胞來評估 B. licheniformis CK1免疫調節的能力,並於結果發現,B. licheniformis CK1及其個別細胞成分可活化 RAW264.7 細胞,並且亦可偵測到TNF- | zh_TW |
| dc.description.abstract | Bacillus spp. are Gram-positive spore-bearing bacteria and have for long been used as probiotics. Certain strains of Bacillus and their metabolites have been used for biotechnological applications or for improving a robust gut-associated lymphoid system (GALT). In this study, the improvement of intestinal immune system by probiotic Bacillus licheniformis CK1 was investigated.
In the first part, the murine macrophage RAW264.7 cell was used to examine the immunomodulatory effects of B. licheniformis CK1. The results showed that intact cells or individual cellular fractions of B. licheniformis CK1 could activate RAW264.7 cells and increase the release of cytokines including tumour necrosis factor- | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T00:35:08Z (GMT). No. of bitstreams: 1 ntu-100-R98626024-1.pdf: 6393057 bytes, checksum: 6e5c1315635286665f1794441d48fa30 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 1
英文摘要 2 序言 4 第一章、文獻檢討 5 一、益生菌 5 1.1 定義 5 1.2 益生菌之特性 6 二、Bacillus 做為益生菌之評估 6 2.1 Bacillus 簡介 6 2.2 Bacillus 之益生菌特性 6 三、免疫防禦機制 9 3.1 先天性免疫與適應性免疫 9 3.2 腸道免疫系統 11 四、益生菌對抗病原菌感染 12 4.1 病原菌 12 4.2 應用益生菌限制病原菌感染 16 五、益生菌對抗腸炎症 18 5.1 腸炎症簡介 18 5.2 應用益生菌改善腸炎症 19 第三章、材料與方法 31 第一節 B. licheniformis CK1之安全性評估 31 第二節 B. licheniformis CK1免疫調節評估 34 第三節 B. licheniformis CK1對抗病原菌 (in vitro) 36 第四節 B. licheniformis CK1對抗病原菌 (in vivo) 42 第五節 B. licheniformis CK1減緩腸炎症狀評估 46 第三章、結果與討論 49 第一節 B. licheniformis CK1之安全性評估 49 第二節 B. licheniformis CK1免疫調節評估 58 第三節 B. licheniformis CK1對抗病原菌 (in vitro) 65 第四節 B. licheniformis CK1對抗病原菌 (in vivo) 82 第五節 B. licheniformis CK1減緩腸炎症狀評估 92 第四章、結論 98 參考文獻 100 作者小傳 115 | |
| dc.language.iso | zh-TW | |
| dc.subject | 免疫 | zh_TW |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | Bacillus | zh_TW |
| dc.subject | Escherichia coli | zh_TW |
| dc.subject | probiotic | en |
| dc.subject | Bacillus | en |
| dc.subject | Escherichia coli | en |
| dc.subject | immune | en |
| dc.title | 益生菌 Bacillus licheniformis CK1 於腸道免疫反應之研究 | zh_TW |
| dc.title | The effect of probiotic Bacillus licheniformis CK1 on the intestinal immune response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝建元,陳小玲,劉?德 | |
| dc.subject.keyword | 益生菌,Bacillus,免疫,Escherichia coli, | zh_TW |
| dc.subject.keyword | probiotic,Bacillus,immune,Escherichia coli, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
