請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28825
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 孫璐西 | |
dc.contributor.author | Hui-Yun Tsai | en |
dc.contributor.author | 蔡蕙芸 | zh_TW |
dc.date.accessioned | 2021-06-13T00:24:36Z | - |
dc.date.available | 2017-07-24 | |
dc.date.copyright | 2007-07-31 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-27 | |
dc.identifier.citation | 行政院衛生署。2006。中華民國94年國人主要死因統計資料。
李沐勳和李威。2001。常用中草藥手冊。國立中國醫藥研究所。132。 沈宜蓁。2005。龍眼花萃取物抗氧化活性之探討。國立台灣大學食品科技研究所。 碩士論文。 李時珍。明代。本草綱目。實用書局。1041。 林進丁。1986。胰島素。藥學雜誌。2:57-63。 黃弼臣。1966。第四章 龍眼。農業要覽園藝作物輯果樹篇。台灣省政府農林廳。193-204。 謝孟潔。2006。龍眼花抗氧化成分之研究。國立台灣大學食品科技研究所。碩士論文。 Alberti KGMM, Zimmet PZ. 1998. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus, provisional report of a WHO consultation. Diabetic Medicine 15: 539–553. Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Khan A, Flanagan VP, Schoene NW, Graves DJ. 2004. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J Agric Food Chem 52(1):65-70. A.O.A.C 1993. Offical method of analysis of the association of official analytical chemists. Washington, DC. Aronson D, Rayfield EJ. 2002. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 8(1):1. Aviram M, Dornfeld L, Kaplan M, Coleman R, Gaitini D, Nitecki S, Hofman A, Rosenblat M, Volkova N, Presser D, Attias J, Hayek T, Fuhrman B. 2002. Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp Clin Res 28(2-3):49-62. Bakker SJ, IJzerman RG, Teerlink T, Westerhoff HV, Gans RO, Heine RJ. 2000. Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis 148:17 –21. Bellomo G, Mirabelli F, DiMonte D, Richelmi P, Thor H, Orrenius C, Orrenius S. 1987. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone). Biochem Pharmacol 36(8):1313-1320. Bieger WP, Michel G, Barwich D, Biehl K, Wirth A. 1984. Diminished insulin receptors on monocytes and erythrocytes in hypertriglyceridemia. Metabolism 33 (11): 982-987. Birnbaum MJ. 2001. Turning down insulin signaling. J Clin Invest 108: 655-659. Brownlee M. 2001. Biochemistry and molecular cell biology of diabetic complications. nature 414: 813-820. Chang YC, Huang KX, Huang AC, Ho YC, Wang CJ. 2006. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis. Food Chem Toxicol 44 (7):1015-1023. Cheng JT, Lin TC, Hsu FL. 1995. Antihypertensive effect of corilagin in the rat. Can J Physiol Pharmacol 73:1425-1429. Clarke WL, Larner J, Pohn SC. 1986. Methods in diabetes research.Vol 2. John Wiley and Sous, ENC. New York 39-86. Conner EM, Grisham MB. 1996. Inflammation, free radicals, and antioxidants. Nutrition 12:274-277. Davalos A, Gomez-Cordoves C, Bartolome B. 2003. Commercial dietary antioxidant supplements assayed for their antioxidant activity by different methodologies. J Agric Food Chem 51(9):2512-2519. Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J. 2005. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 179(1):43-49. Diaz MN, Frei B, Vita JA, Keaney JF. 1997. Antioxidants and atherosclerotic heart disease. N Engl J Med 337(6):408-416. Dubois M, Gilles KA, Hamilton JR, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28:350-356. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. 2002. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76(5):911-922. Eriksson J, Taimela S, Koivisto VA. 1997. Exercise and the metabolic syndrome. Diabetologia 40(2):125-135. Espin JC, Soler-Rivas C, Wichers HJ. 2000. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical.J Agric Food Chem 48(3):648-656. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. 2003. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52: 1-8. Faure P, Rossini E, Lafond JL, Richard MJ, Favier A, Halimi S. 1997. Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets. J Nutr 127(1):103-107. Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497-509 Fraga CG. Leibovitz BE, Tappel AL. 1988. Lipid peroxidation measured as thiobarbituric acid-reactive substance in tissue slices:characterization and comparison between homogenates and microsomes. Free Radic Biol Med 4:144-161. Giacchetti G, Sechi LA, Griffin CA, Don BR, Mantero F, Schambelan M. 2000. The tissue rennin-angiotensin system in rats with fructose-induced hypertension: overexpression of type 1 angiotensin Ⅱ receptor in adipose tissue. J Hypertens 18: 695-702. Hadorn H, Zurcher K. 1974. Zuckerspektrum und Kristallisationstendenz von Honigen. Mitteilungen aus dem Gebiete der. Lebensmitteluntersuchung und Hygiene 65 407–420. Halliwell B, Gutteridge JMC. 1998. Free redicals and antioxidant protection: mechanisms and significance in toxicology and disease.Hum Toxicol 7(1):7-13. Hanamura T, Mayama C, Aoki H, Hirayama Y, Shimizu M. 2006. Antihyperglycemic effect of polyphenols from Acerola (Malpighia emarginata DC.) fruit. Biosci Biotechnol Biochem 70(8):1813-1820. Hanefeld M, Leonhardt W.1981. Das metabolische syndrom. Dt Gesundh-Wesen 36: 545–551. Hayden MR, Tyagi SC. 2002. Intimal redox stress: accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc Diabetol 27:1:3 Hennig B, Meerarani P, Ramadass P, Watkins BA, Toborek M. 2000. Fatty acid-mediated activation of vascular endothelial cells. Metabolism 49 : 1006 –1013 Himsworth H.1936. Diabetes mellitus: a differentiation into insulin-sensitive and insulin-insensitive types. Lancet 1:127-130. Howard RB, Christensen AK, Gibbs FA, Pesch LA.1967. The enzymatic preparation of isolated intact parenchymal cells from rat liver. J Cell Biol 35(3):675-684. Hsu FL, Lu FH, Cheng JT. 1994. Influence of acetonylgeraniin, a hydrolyzable tannin from Euphoria longana, on orthostatic hypotension in a rat model. Planta Med 60: 297-300. Huang TH, Peng G, Kota BP, Li GQ, Yamahara J, Roufogalis BD, Li Y. 2005. Anti-diabetic action of Punica granatum flower extract: activation of PPAR-gamma and identification of an active component. Toxicol Appl Pharmacol 207(2):160-169. Hu ML. 1994. Measurement of plasma protein thiopls and GSH. Methods Enzymol 233: 380-385. Hwang I, Ho H, Hoffman B, Reaven GM. 1987. Fructose induced insulin resistance and hypertension in rats. Hypertension 10:512–516. Isomaa B, Almgren P, Tuomi T, Forse´n B, Lahti K, Nisse´n M, Taskinen M-R, Groop L. 2001. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24: 683–689. Isomaa B. 2003. A major health hazard: the metabolic syndrome. Life Sci 73 (19) : 2395-2411. Jacob S, Lehmann R, Rett K, Häring H-U. 2000. Oxidative stress and insulin action: a role for antioxidants. Antioxidants in Diabetes Management 319 –338. Jenkins DJA, Leeds AR, Wolever TMS, Goff DV, Alberti KGMM, Gassull MA., Hockaday TDR. 1976. Unabsorbable carbohydrates and diabetes:decreased postprandial hyperglycaemia. Lancet ii 172-174. Jiang F, Dusting GJ. 2003. Natural phenolic compounds as cardiovascular therapeutics: potential role of their anti-inflammatory effects. Curr Vasc Pharmacol 1(2):135-136 Juan CC, Fang VS, Hsu YP, Huang YJ, Hsia DB, Yu PC, Kwok CF, Ho LT. 1998. Overexpression of vascular endothelin-1 and endothelin-A receptors in a fructose-induced hypertensive rat model. J Hypertens 16:1775-1782 Jurdjevic M, Tillman C. E. C. 2004. Noble in June 1921, and his account of the discovery of insulin. Bull Hist Med 78(4):864-875. Kadish AH, Litle RL, Sternberg JC. 1968. A new and rapid method for determination of glucose by measurement of rate of oxygen consumption. Clin Chem 14: 116-131. Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. 2003. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26(12):3215-3218. Koivisto VA, Yki-Jarvinen H. 1993. Fructose and insulin sensitivity in patients with type 2 diabetes. J Intern Med 233(2):145-153. Kylin E. 1923. Studien ueber das Hypertonie-Hyperglyka 'mie-Hyperurika' miesyndrom. fuer Innere Medizin 44:105-127. Kelley GL, Allan G, Azhar S. 2004. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 145: 548–555. Kawamura T, Yoshida K, Sugawara A. 2002. Impact of exercise and angiotensin converting enzyme inhibition on tumor necrosis factor-alpha and leptin in fructose -fed hypertensive rats. Hypertension Res Clin Exp 25:919–926. Latte KP, Kolodziej H. 2000. Antifungal effects of hydrolysable tannins and related compounds on dermatophytes, mould fungi and yeasts. Z. Naturforsch. 55: 467-472. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71(4):952-958. Lee AY, Chung SS. 1999. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 13(1):23-30. Lee DH, Lee J, Kang DG, Paek YW, Chung DJ, Chung MY. 2001. Increased vascular endothelin-1 gene expression with unaltered nitric oxide synthase levels in fructose-induced hypertensive rats.Metabolism 50:74-78. Lee MK, Miles P DG., Khoursheed M, Gao KM, Moossa AR, Olefsky JM. 1994. Metabolic effects of troglitazone on fructose-induced insulin resistance inthe rat. Diabetes 43:1435-1439. Le KA, Tappy L. 2006. Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9(4):469-475. Le Roith D, Zick Y. 2001. Recent advances in our understanding of insulin action and insulin resistance.Diabetes Care 24(3):588-597. Leu SJ, Chai SP, Kwok C F, Fong JC. 1998. 4-Boromocrotonic acid enhances basal but inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. BBRC 244:11-14. Lewis GF, Steiner G. 1996. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state. Diabetes Care 19: 390-393. Li Y, Wen S, Kota BP, Peng G, Li GQ, Yamahara J, Roufogalis BD. 2005. Punica granatum flower extract, a potent alpha-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol 99(2):239-244. Lin JH, Tsai CC.1995. Phenolic constituents from the flowers of Euphoria longana Lam.Chin Pharm J 47:113-121. Lin TC, Hsu FL, Cheng JT. 1993. Antihypertensive activity of corilagin and chebulinic acid, tannins from Lumnitzera racemosa. J Nat Prod 56: 629-632. Maddux BA, See W, Lawrence JC Jr, Goldfine AL, Goldfine ID, Evans JL. 2001. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by mircomolar concentrations of alpha-lipoic acid. Diabetes 50:404-410. Marx J L. 1987. Assessing the risks of microbial release. Sci 237:1413-1417. McGowan MW, Artiss JD, Strandbergh DR, Zak B. 1983. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 29(3):538-542. Meerarani P, Badimon JJ, Zias E, Fuster V, Moreno PR . 2006. Metabolic syndrome and diabetic atherothrombosis: implications in vascular complications. Curr Mol Med 6(5):501-514. Miatello R, Vazquez M, Renna N, Cruzado M, Zumino AP, Risler N. 2005. Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. Am J Hypertens 18(6):864-870. Mitscher LA, Jung M, Shankel D, Dou JH, Steele L, Pillai SP. 1997. Chemoprotection : a review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents. Med Res Rev 17:327-365. Miura S, Watanabe J, Sano M, Tomita T, Osawa T, Hara Y, Tomita I. 1995. Effects of various natural antioxidants on the Cu2+-mediated oxidative modification of loe density lipoprotein. Biol Pharm Bull 18:1-4. Nishizawa M, Kohno M, Nishimura M, Kitagawa A, Niwano Y. 2005. Non-reductive scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) by peroxyradical: a useful method for quantitative analysis of peroxyradical. Chem Pharm Bull 53:714-716. Nelson N. 1944. A photometric adaptation of the Somogyi methods for the determination of glucose. J Biol Chem 153:375-377. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351-358. Okabe S, Suganuma M, Imayoshi Y, Taniguchi S, Yoshida T, Fujiki H. 2001.New TNF- releasing inhibitors, geraniin and corilagin, in leaves of Acer nikoense, Megusurino-ki. Biol Pharm Bull 24: 1145-1148 Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S. 2007.Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem 103: 839-846. Okuyama E, Ebihara H, Takeuchi H, Yamazaki M. 1999. The anxiolytic -like principle of the arillus of Euphoria longana. Planta Med 65:115-119. Paolisso G, Di Maro G, Pizza G, D’Amore A, Sgambato S, Tesauro P, Varricchio M, D’Onofrio F. 1992. Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. Am J Physiol 263 :435 –440. Paolisso G, Gambardella A, Tagliamonte MR, Saccomanno F, Salvatore T, Gualdiero P, D'Onofrio MV, Howard BV. 1996. Does free fatty acid infusion impair insulin action also through an increase in oxidative stress? J Clin Endocrinol Metab 81:4244-4248. Patiag D, Qu X, Gray S, Idris I, Wilkes M, Seale JP, Donnelly R. 2000. Possible interactions between angiotensin Ⅱ and insulin: effects on glucose and lipid metabolism in vivo and in vitro. J Endocrinol 167:525-531. Pedersen O, Ronald C, Flier JS, Kahn BB. 1991. High fat feeding causes insulin resistance and a marked decrease in the experession of glucose transporters (Glut4) in fat cells of rats. Endocrinology 129:771-777. Pessin JE, Bell GI. 1992. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu Rev Physiol 54:911-930. Pessin JE, Saltiel AR. 2000. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106(2):165-169. Puhl H, Waeg G, Esterbauer H. 1994. Methods to determine oxidation of low-density lipoproteins. Methods Enzymol 233:425-441. Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. 2003. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res Clin Pract 62(3):139-148. Rangkadilok N, Worasuttayangkurn L, Bennett RN, Satayavivad J. 2005. Identification and quantification of polyphenolic compounds in Longan (Euphoria longana Lam.) fruit. J Agric Food Chem 53(5):1387-1392. Rangkadilok N, Sitthimonchai S, Worasuttayangkurn L, Mahidol C, Ruchirawat M, Satayavivad J. 2007. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem Toxicol 45(2):328-336. Reaven GM. 1988. Role of insulin resistance in human disease. Diabetes 37: 1595 – 1607 . Reaven GM, Ho H, Hoffman BB. 1990. Effects of a fructose-enriched diet on plasma insulin and triglyceride concentration in SHR and WKY rats. Horm Metab Res 22:363–365. Reaven GM, Lithell H, Landsberg L. 1996. Hypertension and associated metabolic abnormalities: the role of insulin resistance and the sympathoadrenal system. N Engl J Med 334:374–381. Reed MJ, Ho H, Donnelly R, Reaven GM. 1994. Salt-sensitive and carbohydrate- sensitive rodent hypertension: evidence of strain differences. Blood Pressure 3:197–201. Richmond W. 1973. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin Chem 19(12):1350-1356. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N. 1998. Prolonged oxidative stress impairs insulin-induced glut4 translocation in 3t3-l1 adipocytes. Diabetes 47: 1562-1569. Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of Xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945-8 Son D, Hutchings S, Pang CC. 2005. Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol 508:205–210. Stern MP, Morales PA, Haffner SM, Valdez RA. 1992. Hyperdynamic circulation and the insulin resistance syndrome ('syndrome X'). Hypertension 20(6):802-808. Stephens JM, Pilch PF. 1995. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr Rev 16(4):529-46. Tiedge M, Lortz S, Drinkgern J, Lenzen S. 1997. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46 :1733 -1742 Toborek M, Hennig B. 1994. Fatty acid-mediated effects on the glutathione redox cycle in cultured endothelial cells. Am J Clin Nutr 59:60-65 Togashi N, Ura N, Higashiura K. 2000. The contribution of skeletal muscle tumor necrosis factor-alpha to insulin resistance and hypertension in fructose-fed rats. J Hypertens 18:1605–1610. Thirunavukkarasu V, Anitah Nandhini AT, Anuradha CV. 2004. Cardiac lipids and antioxidant status of high fructose rats and the effect of alpha-lipoic acid. Nutr Metab Cardiovasc Dis 14:351–357. Welsch CA, Lachance PA, Wasserman BP. 1989. Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr 119(11):1698-1704 White MF, Kahn CR. 1994. The insulin signaling system. J Biol Chem 269(1):1-4. Wong KC. 2000. Longan production in Asia Bangkok, Thailand.. Food and agriculture organization of united nations.1-44. Wu LY, Juan CC, Hwang LS, Hsu YP, Ho PH, Ho LT. 2004. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur J Nutr 43(2):116-124 Yalow RS, Glick SM, Roth J, Berson SA. 1965. Plasma insulin and growth hormone levels in obesity and diabetes. Ann NY Acad Sci 131:357-373. Zavaroni I, Sander S, Scott S, Reaven GM. 1980. Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism 29(10): 970-973. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28825 | - |
dc.description.abstract | 代謝症候群是近年來受到重視的健康議題,其症狀包括高胰島素血症、胰島素阻抗、高三酸甘油酯血症和高血壓等,此些危險因子的叢聚現象與第二型糖尿病和心血管疾病有密切的相關性。前人研究也證實,於飲食中多攝取抗氧化物質有助於預防代謝症候群因而降低心血管疾病的發生。本研究室於先前的研究發現龍眼 (Dimocarpus longan Lour.) 花在體外具有很好的抗氧化活性,因此本研究目的在探討龍眼花粗萃物的高抗氧化活性是否能改善代謝症候群之諸多症狀。
實驗第一階段為體外抗氧化性試驗,先將龍眼花粉末分別以沸水萃取及室溫下以95%乙醇或甲醇溶劑攪拌萃取。再以兩種抗氧化活性評估方法,包括清除DPPH自由基能力試驗和抑制銅離子誘導人類低密度脂蛋白氧化檢測此三種不同溶劑之龍眼花粗萃物。實驗結果顯示,龍眼花水萃物於此二種抗氧化實驗中皆展現較高之抗氧化力,其清除DPPH自由基之EC50值為3.75±0.61 μg/mL,且延緩銅離子誘導LDL氧化效果為同濃度下正控制組trolox之1.57倍。整體而言抗氧化活性以水萃物最佳,其次為乙醇和甲醇萃取物。 第二階段為對大鼠進行急性灌食試驗,觀察龍眼花粗萃物對其耐糖能力的影響。急性試驗中,以龍眼花粗萃物125或250 mg/kg body weight (BW) 的劑量灌食正常Sprague-Dawley大鼠,同時進行口服葡萄糖耐受性試驗。結果顯示,大鼠灌食龍眼花水萃物250 mg/kg BW,在第30分鐘的血漿葡萄糖值顯著低於對照組,但胰島素濃度在各時間點則無顯著差異。此外,灌食龍眼花乙醇萃物125或250 mg/kg BW的劑量,不論在血漿葡萄糖或胰島素濃度與對照組比較皆無顯著差異。顯示大鼠急性灌食龍眼花水萃物可以減緩血糖上升的速度,其作用不在於改善胰島素敏感性,可能與延緩或干擾腸道對糖分的吸收有關。 第三階段為長效性試驗,以高果糖飼料誘發大鼠產生代謝症候群,觀察龍眼花水萃物是否能改善其症狀。將體重約250克Sprague-Dawley大鼠隨機分為4組:C組給予標準飼料;F組給予高果糖飼料;L組除了高果糖飼料外,每隻每天灌食龍眼花水萃物 125 mg/kg BW,為低劑量組;H組除了高果糖飼料外,每隻每天灌食龍眼花水萃物 250 mg/kg BW,為高劑量組,C組與F組則以灌食去離子水作為對照。實驗期為14週。F組自第2週起,收縮壓、禁食狀態血漿三酸甘油酯和胰島素皆明顯開始上升,但血漿葡萄糖濃度仍維持正常;於第4週進行口服葡萄糖耐受性試驗,已有胰島素阻抗之情況發生,顯示長期餵飼高果糖飼料已明顯誘導大鼠產生代謝症候群之症狀。在體內抗氧化能力試驗中,餵飼高果糖飼料14週後,會造成體內氧化壓力增加,血漿脂質過氧化物TBARS濃度明顯上升且肝臟抗氧化酵素活性下降。 給予低劑量125 mg/kg BW龍眼花水萃物的組別,可降低高血壓,於實驗11和12週血壓已明顯低於F組。在胰島素敏感性方面,於4、8和12週的口服葡萄糖耐受性試驗中,有改善胰島素阻抗的現象,但效果並不明顯。對於禁食血漿三酸甘油酯濃度仍不具有調節作用。在體內抗氧化能力試驗中可提升肝臟抗氧化酵素Glutathione reductase的活性,而在血漿脂質過氧化物TBARS濃度則無差異。 給予高劑量250 mg/kg BW龍眼花水萃物的組別,降血壓效果顯著,於實驗第7週開始已明顯低於F組。在胰島素敏感性方面,於第4週口服葡萄糖耐受性試驗中即開始有改善胰島素阻抗之現象。而給予高劑量的龍眼花水萃物仍無法降低禁食血漿三酸甘油酯濃度。在體內抗氧化能力試驗中可提升肝臟抗氧化酵素Glutathione reductase的活性,且可降低血漿脂質過氧化物TBARS的濃度。 分析脂肪細胞胰島素訊息傳遞相關蛋白質表現量的結果顯示,給予高果糖飼料會造成insulin receptor substrate (IRS-1)、Akt和glucose transporter 4 (GLUT 4)表現量降低,導致胰島素受體對胰島素之敏感性降低。而給予低劑量龍眼花水萃物14週後有增加IRS-1的表現量,而給予高劑量龍眼花水萃物14週後更提升了IRS-1和GLUT 4的表現量,此結果顯示龍眼花水萃物可藉由增加胰島素訊息傳遞相關蛋白質之表現量,使胰島素敏感性增加。 本研究結果顯示,龍眼花水萃物具有很好的抗氧化活性,且可改善高血壓、高胰島素血症、胰島素阻抗和降低體內氧化壓力。 | zh_TW |
dc.description.abstract | Metabolic syndrome is a cluster of disorders, including hyperinsulinemia, insulin resistance, hypertriglyceridemia and hypertension that increase one's risk for type 2 diabetes and cardiovascular disease . Natural antioxidants were reported to ameliorate metabolic syndrome. Previous study in our laboratory has shown that Longan (Dimocarpus longan Lour.) flower had strong antioxidant activity in vitro. Therefore, the objective of this study was to evaluate the effect of the supplemention of Longan flower extract on metabolic syndrome.
The first stage of this study was to analyze the antioxidative activity of Longan flower in vitro, the crude extracts were prepared by extracting Longan flower with boiling water and two solvents (95% ethanol, methanol) at room temperature. Then, the three different solvent extracts of Longan flower were tested for two different antioxidant assays, including DPPH free radical scavenging effect and the inhibition of Cu2+-induced oxidation of human LDL. The results of antioxidant assays revealed that the best effect was exhibited by the water extract, followed by ethanol and methanol. The EC50 value of water extract in scavenging DPPH radicals was 3.75±0.61 µg/mL, and its effect on delaying LDL oxidation is 1.57 times better than trolox at the same concentration level (1 µg/mL). The second stage of the study was to observe the glucose tolerance of rats after the acute treatment with Longan flower crude extract (125 mg/kg or 250 mg/kg) and glucose. Results of oral glucose tolerance test (OGTT) in rats showed that the plasma glucose levels of the Sprague-Dawley rats administered 250 mg/kg BW of Longan flower water extract (LFWE) were lower than the control group after 30 minutes of ingestion but insulin concentrations showed no difference with the control group at each time intervals . However, both the plasma glucose and insulin levels of the rats ingested Longan flower ethanol extract showed no significant difference with control group. These findings suggest that Longan flower water extract may delay or interference with the sugar absorption in the gastrointestinal tract without changing insulin secretion and its action. The third stage is to investigate the effect of long-term treatment of LFWE on rats with metabolic syndrome induced by high fructose diet. Male Sprague-Dawley rats of body weight around 250 g were randomly divided into four groups: group C, fed with standard Purina chow; group F, fed with high fructose diet alone; group L, fed with high fructose diet plus LFWE 125 mg/kg BW per day by gavage (a low dose group) and group H, fed high fructose diet plus LFWE 250 mg/kg BW per day by gavage (a high dose group). The dietary manipulation lasted for 14 weeks. Results of our study showed that, high fructose feeding for 2 weeks cause significant increase in sytosolic blood pressure, fasting plasma triglyceride and insulin levels without elevating fasting plasma glucose. And insulin resistance was demonstrated after the 4th week by OGTT. These results indicated that fructose-rich diet could cause a cluster of disorders in metabolic syndrome. In antioxidative capacity analyses, at the end of the 12-week experiment high fructose diet increased plasma TBARS and significantly decreased liver antioxidant enzyme activity . The supplementation of LFWE ameliorated insulin resistance by enhancing the expression of insulin signaling pathway related proteins, including GLUT 4 and insulin receptor substrate-1. LFWE supplementation was also found to decrease SBP and ameliorated oxidative stress. These findings indicate that Longan flower water extract may improve the symptoms of the metabolic syndrome in fructose-fed rats. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T00:24:36Z (GMT). No. of bitstreams: 1 ntu-96-R94641032-1.pdf: 1153185 bytes, checksum: a2bce02de397e5888f9a07d4ef5449ce (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
摘要I 目錄V 表次X 圖次XI 壹、前言1 貳、文獻回顧2 第一節 龍眼花2 一、植物概況2 二、龍眼成分與功效3 三、龍眼花成分與功效5 第二節、代謝症候群9 一、代謝症候群之簡介9 二、代謝症候群之延革9 三、代謝症候群之定義及診斷標準11 四、代謝症候群與第二型糖尿病14 第三節、葡萄糖代謝與胰島素訊息傳遞16 一、胰島素 (Insulin)16 二、葡萄糖轉運蛋白 (Glucose transporter)16 三、胰島素訊息傳遞與葡萄糖運送17 四、胰島素阻抗 (Insulin resistance)18 第四節、高血糖、氧化壓力與胰島素阻抗19 ㄧ、高血糖與自由基之生成19 二、多元醇代謝途徑 (Polyol pathway) 20 三、胰島素阻抗與氧化壓力21 四、體內抗氧化防禦系統及外源性抗氧化物質22 第五節、高果糖誘導代謝症候群之動物模式26 一、高果糖動物模式26 二、果糖與脂質代謝27 三、果糖與胰島素阻抗28 四、果糖與高血壓28 参、研究目的與實驗架構30 ㄧ、研究目的30 二、實驗架構31 (一) 整體架構31 (二) 體外抗氧化試驗32 (三) 體內急性試驗33 (四) 長效性試驗34 肆、材料與方法35 第一節、實驗材料與儀器設備35 一、實驗材料35 二、化學藥品與試劑35 (一) 化學藥品35 (二) 溶劑37 (三) 酵素套組37 (四) 動物飼料組成37 (五) 西方點墨法38 三、儀器設備39 (一) 用於原料前處理39 (二) 用於原料基本成分分析39 (三) 用於單醣之測定40 (四) 用於動物飼料之配製40 (五) 用於動物實驗樣品之分析41 第二節、實驗方法42 實驗Ⅰ:龍眼花體外抗氧化試驗42 一、樣品前處理.42 二、DPPH (2,2-Diphenyl-1-picrylhydrazyl hydrate) 自由基清除能力之測定.....43 三、抑制銅離子誘導人類LDL氧化反應試驗44 實驗Ⅱ、急性試驗-探討急性灌食龍眼花粗萃物對大鼠葡萄糖耐受性的影響...46 一、實驗動物46 二、口服葡萄糖耐受性試驗 (Oral Glucose Tolerance Test, OGTT) 46 三、血液的處理46 (一) 血漿葡萄糖濃度的測定46 (二) 血漿胰島素濃度的測定47 實驗Ⅲ、龍眼花組成分之探討48 一、一般組成份分析48 (一) 水分測定48 (二) 灰分測定48 (三) 粗脂肪測定48 (四) 粗蛋白測定49 (五) 膳食纖維測定50 (六) 無氮抽出物含量51 二、醣類分析52 (一) 總醣測定52 (二) 還原糖測定52 (三) 單醣測定53 實驗Ⅳ、長效性試驗-探討連續灌食龍眼花水萃物14週對高果糖餵飼大鼠模式誘發胰島素阻抗伴生高血壓的影響54 一、實驗動物54 二、動物分組與飼養54 三、血壓之測量57 四、禁食狀態血液之採集與處理57 五、口服葡萄糖耐受性試驗58 六、動物犧牲與檢體之收集與分析58 (一) 動物檢體收集與處理58 (二) 動物犧牲後之生化分析項目59 1. 血漿之生化值分析59 2. 肝臟之生化值分析61 3. 肝臟氧化壓力之分析61 (三) 血糖調控相關蛋白質含量之測定63 伍、結果與討論67 實驗Ⅰ、龍眼花體外抗氧化試驗67 ㄧ、 DPPH自由基清除能力之測定67 二、 抑制銅離子誘導人類LDL氧化反應試驗70 實驗Ⅱ、急性口服葡萄糖耐受性試驗73 ㄧ、龍眼花粗萃物低 (125 mg/kg BW) 劑量的影響73 二、龍眼花粗萃物高 (250 mg/kg BW) 劑量的影響74 三、討論77 實驗Ⅲ、龍眼花組成分之探討78 ㄧ、 龍眼花及其水萃物和乙醇萃物之基本組成78 二、 龍眼花水萃物和乙醇萃物之總醣與還原糖含量78 三、 龍眼花水萃物和乙醇萃物之單醣組成79 實驗Ⅳ、長效性試驗-探討連續灌食龍眼花水萃物14週對高果糖餵飼大鼠模式誘發胰島素阻抗伴生高血壓的影響84 ㄧ、 結果84 (一) 生長狀況84 (二) 飼養期之血壓變化84 (三) 飼養期禁食血漿葡萄糖、胰島素和三酸甘油酯之變化84 (四) 口服葡萄糖耐受性試驗90 (五) 組織臟器重量97 (六) 禁食血漿分析97 (七) 肝臟脂質分析97 (八) 氧化壓力分析101 (九) 脂肪細胞胰島素訊息傳遞相關蛋白質表現量104 二、討論107 (一) 高果糖動物模式107 (二) 生長狀況與組織臟器重量107 (三) 高胰島素血症與胰島素阻抗107 (四) 高三酸甘油酯血症108 (五) 高血壓108 (六) 氧化壓力109 (七) 胰島素訊息傳遞相關蛋白質表現量110 陸、結論112 柒、參考文獻113 | |
dc.language.iso | zh-TW | |
dc.title | 龍眼花水萃物對高果糖誘發代謝症候群大鼠之影響 | zh_TW |
dc.title | Effect of Longan (Dimocarpus longan Lour.) Flower Water Extract on Metabolic Syndrome in Fructose-Fed Rats | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 吳亮宜 | |
dc.contributor.oralexamcommittee | 蔡敬民,黃青真,江文章 | |
dc.subject.keyword | 代謝症候群,胰島素阻抗,龍眼花, | zh_TW |
dc.subject.keyword | metabolic syndrome,insulin resistance,Longan flower, | en |
dc.relation.page | 124 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。