Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28384
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌
dc.contributor.authorPei-Shan Tsaien
dc.contributor.author蔡佩珊zh_TW
dc.date.accessioned2021-06-13T00:06:45Z-
dc.date.available2009-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citation工業技術研究院化學工業研究所,1986,工業用酵素:世界市場暨國內限況調查。pp. 5-10
王西華、林玉娟、程梅萍,1994,固態發酵的回顧與展望。生物產業。第5卷,第36期,p. 17-24
林瑩楨、李河水、華傑。2001。機能性蛋白質在食品加工之應用
張智慧、華傑。2004。免疫調節機能性食品現況與展望
陳世爵、陳潤卿。1981。黃豆油與黃豆食品手冊
陳麗婷、程竹青、華傑。2004。食品胜肽技術發展路程圖
曾浩洋、董啟功。1985a。以Rhizopus thailandensis發酵脫脂黃豆粉之酵素活性及生化組成變化探討。J. Chin. Agric. Chem. Soc. 23(1~2):111-118
曾浩洋、董啟功。1985b。以Rhizopus thailandensis發酵脫脂黃豆粉之酵素活性及生化組成變化探討: (二) 不同發酵條件及生化組成與流變行質之比較。J. Chin. Agric. Chem. Soc. 23(3~4):300-307
黃正財。1983。麴。製酒科技專論彙編5:145-160
顏宏達。1988。養豬飼料學。華香園出版社
顏宏達。2004。養豬新知12-1。發酵液狀飼料餵母豬
鍾金湯、劉仲康。2005。細胞免疫學大師─梅契尼 科夫,科學發展月刊 385:50-57
劉嘉煉。1983。中國農業化學會誌 21, 3-4 115-123
鄧德豐。1987。應用微生物學。業強出版社。30-46
戴乃倫、葉澤波。1979。養豬飼料。畜牧要覽飼料篇 67-68
羅國仁、余立文。2004。固態發酵製成的開發與應用。食品工業 36 (10):2-10
Adibi S. 1980. Role of small intestine in digestion of protein to amino acids and peptides for transport to portal circulation. Curr Concepts Nutr 9:55-75.
Adinarayana K, Prabhakar T, Srinivasulu V, Rao MA, Lakshmi PJ, Ellaiah P. 2003. Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum. Process Biochem 39(2):171-7.
Aidoo KE, Hendry R, Wood BJB. 1982. Solid Substrate Fermentations. Adv Appl Microbiol 28:201-37.
Andreatti RL, da Silva EN, Curi PR. 1997. Organic acids an anaerobic microflora for control of experimental infection of broilers by Salmonella typhimurium and S-enteritidis. Arq Bras Med Vet Zoo 49(6):661-72.
Ariyoshi Y. 1993. Angiotensin-Converting Enzyme-Inhibitors Derived from Food Proteins. Trends Food Sci Tech 4(5):139-44.
Bellamy WR, Wakabayashi H, Takase M, Kawase K, Shimamura S, Tomita M. 1993. Role of Cell-Binding in the Antibacterial Mechanism of Lactoferricin-B. J Appl Bacteriol 75(5):478-84.
Bianchi ATJ, Moonenleusen HWM, Vanderheijden PJ, Bokhout BA. 1995. The Use of a Double Antibody Sandwich Elisa and Monoclonal-Antibodies for the Assessment of Porcine Igm, Igc and Iga Concentrations. Vet Immunol Immunop 44(3-4):309-17.
Chantasartrasamee K, Ayuthaya DIN, Intarareugsorn S, Dharmsthiti S. 2005. Phytase activity from Aspergillus oryzae AK9 cultivated on solid state soybean meal medium. Process Biochem 40(7):2285-9.
Chen HM, Muramoto K, Yamauchi F. 1995. Structural-Analysis of Antioxidative Peptides from Soybean Beta-Conglycinin. J Agr Food Chem 43(3):574-8.
Choct M, Hughes RJ, Bedford MR. 1999. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Brit Poultry Sci 40(3):419-22.
Choct M, Hughes RJ, Wang J, Bedford MR, Morgan AJ, Annison G. 1996. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Brit Poultry Sci 37(3):609-21.
Church DC, Santos A. 1981. Effect of Graded-Levels of Soybean-Meal and of a Non-Protein Nitrogen-Molasses Supplement on Consumption and Digestibility of Wheat Straw. J Anim Sci 53(6):1609-15.
Cifone MG, Ulisse S, Santoni A. 2001. Natural killer cells and nitric oxide. Int Immunopharmacol 1(8):1513-24.
Clapperton M, Bishop SC, Glass EJ. 2005. Innate immune traits differ between Meishan and Large White pigs. Vet Immunol Immunop 104(3-4):131-44.
Collignon PJ. 1999. Vancomycin-resistant enterococci and use of avoparcin in animal feed: is there a link? Med J Australia 171(3):144-6.
Cone JW, Vanderpoel ATFB. 1993. Prediction of Apparent Ileal Protein Digestibility in Pigs with a 2-Step in-Vitro Method. J Sci Food Agr 62(4):393-400.
Davis ME, Maxwell CV, Erf GF, Brown DC, Wistuba TJ. 2004. Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J Anim Sci 82(6):1882-91.
du Manoir JM, Albright BN, Stevenson G, Thompson SH, Mitchell GB, Clark ME, Caswell JL. 2002. Variability of neutrophil and pulmonary alveolar macrophage function in swine. Vet Immunol Immunop 89(3-4):175-86.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 28(3):350-6.
Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh S, Szakacs G, Pandey A. 2003. Use of response surface methodology for optimizing process parameters for the production of alpha-amylase by Aspergillus oryzae. Biochem Eng J 15(2):107-15.
Gaskins HR. 2001. Intestinal bacteria and their influence on swine growth. Swine nutrituon.2nd ed. Lewis AJ, Southern LL, eds. CRC Press, Boca Raton, FL. 585-608
Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. 2004. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259-75.
Grimble RF, Mansaray YKC. 1987. Effects in Rats of Dietary-Protein Inadequacy on Lactose Production, Milk Volume and Components of the Lactose Synthetase Complex (Ec2.4.1.22). Ann Nutr Metab 31(3):179-84.
Hadden JW. 1993. Immunostimulants. Immunol Today 14(6):275-80.
Henney CS, Kuribayashi K, Kern DE, Gillis S. 1981. Interleukin-2 Augments Natural-Killer Cell-Activity. Nature 291(5813):335-8.
Hesseltine CW, Featherston CL, Lombard GL, Dowell VR. 1985. Anaerobic Growth of Molds Isolated from Fermentation Starters Used for Foods in Asian Countries. Mycologia 77(3):390-400.
Hong KJ, Lee CH, Kim SW. 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. Journal of Med Food 7(4):430-5.
Klobasa F, Butler JE, Werhahn E, Habe F. 1986. Maternal Neonatal Immunoregulation in Swine .2. Influence of Multiparity on De Novo Immunoglobulin-Synthesis by Piglets. Vet Immunol Immunop 11(2):149-59.
Lahl WJ, Braun SD. 1994. Enzymatic Production of Protein Hydrolysates for Food Use. Food Technol-Chicago 48(10):68-71.
Lee YZ, Simpson BK, Haard NF. 1982. Supplementation of Squid Fermentation with Proteolytic-Enzymes. J Food Biochem 6(2):127-34.
Lo DY, Chen TH, Chien MS, Koge K, Hosono A, Kaminogawa S, Lee WC. 2005. Effects of sugar cane extract on the modulation of immunity in pigs. J Vet Med Sci 67(6):591-7.
Mao XF, Piao XS, Lai CH, Li DF, Xing JJ, Shi BL. 2005. Effects of beta-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs. J Anim Sci 83(12):2775-82.
Maruyama S, Nakagomi K, Tomizuka N, Suzuki H. 1985. Angiotensin-I-Converting Enzyme-Inhibitor Derived from an Enzymatic Hydrolysate of Casein .2. Isolation and Bradykinin-Potentiating Activity on the Uterus and the Ileum of Rats. Agr Biol Chem Tokyo 49(5):1405-9.
Meisel H, Bockelmann W. 1999. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Anton Leeuw Int J G 76(1):207-15.
Meisel H, Frister H. 1989. Chemical Characterization of Bioactive Peptides from Invivo Digests of Casein. J Dairy Res 56(3):343-9.
Miller RH, Smith JW, Hooven NW, Creegan ME. 1972. Feed Consumption Differences among Lactating Cows. J Dairy Sci 55(4):454-&.
Mitchell D, Lonsane B. 1992. Definition, characteristics and potential. In: Doelle H W. Solid-Substrate Cultivation. Barking: Elsevier:1-16.
Morel F, Doussiere J, Vignais PV. 1991. The Superoxide-Generating Oxidase of Phagocytic-Cells - Physiological, Molecular and Pathological Aspects. Eur J Biochem 201(3):523-46.
Mosmann TR, Sad S. 1996. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17(3):138-46.
Murtaugh MP, Foss DL. 2002. Inflammatory cytokines and antigen presenting cell activation. Vet Immunol Immunop 87(3-4):109-21.
Nigam P. 1990. Investigation of Some Factors Important for Solid-State Fermentation of Sugar-Cane Bagasse for Animal Feed Production. Enzyme Microb Tech 12(10):808-11.
Parker F, Migliore-Samour D, Floc'h F, Zerial A, Werner GH, Jolles J, Casaretto M, Zahn H, Jolles P. 1984. Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur j biochem / FEBS 145(3):677-82.
Pluske JR, Siba PM, Pethick DW, Durmic Z, Mullan BP, Hampson DJ. 1996. The incidence of swine dysentery in pigs can be reduced by feeding diets that limit the amount of fermentable substrate entering the large intestine. J Nutr 126(11):2920-33.
Radcliffe J. 2000 British supermarkets: forging changes in poultrynutrition. Austral Poult Sci Sympos 12:25-31.
Rozeboom DW, Shaw DT, Tempelman RJ, Miguel JC, Pettigrew JE, Connolly A. 2005. Effects of mannan oligosaccharide and an antimicrobial product in nursery diets on performance of pigs reared on three different farms. J Anim Sci 83(11):2637-44.
Saito H, Miyakawa H, Tamura Y, Shimamura S, Tomita M. 1991. Potent Bactericidal Activity of Bovine Lactoferrin Hydrolysate Produced by Heat-Treatment at Acidic Ph. J Dairy Res 74(11):3724-30.
Sato R, Shindo M, Gunshin H, Noguchi T, Naito H. 1991. Characterization of Phosphopeptide Derived from Bovine Beta-Casein - an Inhibitor to Intra-Intestinal Precipitation of Calcium-Phosphate. Biochim Biophys Acta 1077(3):413-5.
Seo JH, Lee SP. 2004. Production of fibrinolytic enzyme from soybean grits fermented by Bacillus firmus NA-1. J Med Food 7(4):442-9.
Siemensma AD, Weijer WJ, Bak HJ. 1993. The Importance of Peptide Lengths in Hypoallergenic Infant Formulas. Trends Food Sci Tech 4(1):16-21.
Spring P, Wenk C, Dawson KA, Newman KE. 2000. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella-challenged broiler chicks. Poultry Sci 79(2):205-11.
Steigbig.Rt, Lambert LH, Remingto.Js. 1974. Phagocytic and Bactericidal Properties of Normal Human Monocytes. J Clin Invest 53(1):131-42.
Sugano M, Yamada Y, Yoshida K, Hashimoto Y, Matsuo T, Kimoto M. 1988. The Hypocholesterolemic Action of the Undigested Fraction of Soybean Protein in Rats. Atherosclerosis 72(2-3):115-22.
Sugiyama K, Egawa M, Onzuka H, Oba K. 1991. Characteristics of Sardine Muscle Hydrolysates Prepared by Various Enzymatic Treatments. Nippon Suisan Gakk 57(3):475-9.
Sutherland MA, Rodriguez-Zas SL, Ellis M, Salak-Johnson JL. 2005. Breed and age affect baseline immune traits, cortisol, and performance in growing pigs. J Anim Sci 83(9):2087-95.
Wang RH, Law RCS, Webb C. 2005. Protease production and conidiation by Aspergillus oryzae in flour fermentation. Process Biochem 40(1):217-27.
Wolf. 1970. Soybean proteins: Their functional, Chemical, and Physsical Properties. J Agr Food Chem 18:969.
Wu JP, Ding XL. 2001. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J Agr Food Chem 49(1):501-6.
Yoshikawa M, Fujita H, Matoba N, Takenaka Y, Yamamoto T, Yamauchi R, Tsuruki H, Takahata K. 2000. Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors 12(1-4):143-6.
Yoshikawa M, Kishi K, Takahashi M, Watanabe A, Miyamura T, Yamazaki M, Chiba H. 1993. Immunostimulating Peptide Derived from Soybean Protein. Ann Ny Acad Sci 685:375-6.
Zhang JH, Tatsumi E, Fan JF, Li LT. 2007. Chemical components of Aspergillus-type Douchi, a Chinese traditional fermented soybean product, change during the fermentation process. Int J Food Sci Tech 42(3):263-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28384-
dc.description.abstract本論文在探討發酵豆粕對免疫調節功能的影響,分別進行體內動物餵食模式和體外的細胞模式,體內試驗探討其對適應性免疫與先天性免疫的影響;體外試驗探討其對適應性免疫的影響。64隻豬隻平均飼養於16圍欄,分為兩組,一為飼糧中添加抗生素(對照組),另一則用發酵豆粕取代抗生素(處理組)。兩組之間顆粒性白血球與單核球細胞產生活性氧能力或吞噬能力無顯著性差異,然而處理組可隨日齡增加並維持穩定產生活性氧與吞噬能力。適應性免疫反應結果顯示,處理組血漿中免疫球蛋白 G 含量高於對照組,亦有較好的T 細胞增生率,而細胞經刺激源作用後, TNF-α分泌比例與對照組相似,此結果顯示利用發酵豆粕取代抗生素可維持豬隻體內的先天性與適應性免疫反應,並可維持其原有的生長性能。細胞培養結果,低濃度(10 μg/ml)發酵豆粕蛋白質水萃物刺激豬隻 T 細胞分泌 IL-4 之能力顯著地高於未發酵豆粕者 (p < 0.05),然而濃度間無顯著性差異,推測豆粕經發酵後產生之小分子蛋白質或胜肽,並非維持豬隻體內免疫力的主要成分。zh_TW
dc.description.abstractThe study aims to characterize the immunomodulating effects of fermented soybean meal. In vivo and in vitro studies were conducted in pigs and porcine T cells, respectively. The innate (non-specific) and adaptive (specific) immunity were investigated in vivo while in the cell-mediated immune responses were evaluated in vitro.
A group of 64 pigs, evenly divided and raised in 16 pens, were separated into two groups: the control group and the experimental group. Pigs in the control group were fed with feed containing antibiotics while the experimental group consumed dietary supplements of fermented soybean meal. The oxidative burst and phagocytotic activities of the polymorphnuclear neutrophils and monocytes between the two groups showed no significant difference. However, reactive oxygen species (ROS) and phagocytotic activities were stably maintained in pigs fed with diets supplemented with fermented soybean meal. After LPS mitogen stimulation, monocytes of the two groups secreted equivalent levels of TNF-α.. When measuring adaptive immunity, both plasma IgG concentration and T-cell proliferation were higher in the experimental group than in the control group. These results showed that pigs supplemented with fermented soybean meal instead of antibiotics could maintain the innate and adaptive immunity, meanwhile, had the same performance between two groups.
The effect of fermented soybean meal treatment to T cells was also evaluated in vitro. Comparing the effect of two treatments at low dosage, we found that porcine T cells secreted significantly higher (p < 0.05) levels of IL-4 when treated with fermented soybean meal than with unfermented soybean meal, however, not strictly correlated dose-dependently. We hypothesized that the proteins produced by fermenting soybean meal is not the major component in maintaining the immunity of pigs.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:06:45Z (GMT). No. of bitstreams: 1
ntu-96-R94641008-1.pdf: 646715 bytes, checksum: 67b86083134ab3f6a8a0592202730121 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要……………………………………………………………………………….I
英文摘要………...........................................................................................................II
目錄………..................................................................................................................III
表目錄..........................................................................................................................VI
圖目錄........................................................................................................................VII
第一章 前言……………………………………………………………………… 1
第二章 文獻回顧
2.1抗生素於動物工業上的使用現況………………………………………….. 2
2.2 大豆…………………………………………………………………………. 3
2.2.1大豆介紹與特性…………………………………………………………. 3
2.2.2 大豆用途………………………………………………………………… 5
2.3 大豆加工過程的相關產物─大豆粕 (Soybean meal, SBM)… ………..… 5
2.4 固態發酵……………………………………………………………………. 7
2.4.1固態發酵之特性…………………………………………………………. 7
2.4.2固態發酵之優缺點………………………………………………………. 8
2.5 Aspergillus sp. (麴菌)………………………………………………………… 10
2.6機能性蛋白質與生物活性胜肽………………………..…………………….. 11
2.6.1.機能性蛋白質與生物活性胜肽之簡介 ………………………………… 11
2.6.2食品中的生物活性蛋白質及相關胜肽………………………………….. 12
2.6.2.1動物性原料……………………………………………………………..12
2.6.2.2植物性原料……………………………………………………………..14
2.7蛋白質與胜肽於腸道的吸收…………………………………………………16
2.8 免疫概述 …………………………………………………………………… 17
2.8.1免疫系統簡介…………………………………………………………….. 17
2.8.2 免疫細胞…………………………………………………………………. 17
2.8.3 先天性免疫反應…………………………………………………………...19
2.8.4 後天性免疫反應 ………………………………………………………… 21
第三章 實驗設計………………............................................................................. 24
3.1發酵豆粕基本成分分析與活性胜肽萃取……………………………………24
3.2以動物實驗探討發酵豆粕之胜肽免疫調節功能……………………………25
3.3以細胞實驗探討發酵豆粕之胜肽免疫調節功能……………………………26
第四章 材料與方法………………………………………………………………..27
4.1 發酵豆粕基本成分分析及活性胜肽萃取…………………………………...27
4.1.1發酵豆粕基本成分分析 ………………………………………………….27
4.1.1.1水分含量………………….…………………………………………….27
4.1.1.2灰分測定………………………………………………………………..27
4.1.1.3 粗蛋白測定…………………………………………………………… 27
4.1.1.4 粗脂肪測定…………………………………………………………… 28
4.1.2發酵豆粕水萃液製備…………………………………………………… ..28
4.1.2.1發酵豆粕水萃物可溶性蛋白質含量……………………………….. ...29
4.1.2.2 發酵豆粕水萃物總醣含量…………………………………………. 29
4.1.2.3 發酵豆粕水萃物胜肽含量…………………………………………. 30
4.1.2.4 發酵豆粕分子量分佈………………………………………………. 30
4.2以動物實驗探討發酵豆粕之胜肽免疫調節功能………………………….. 31
4.2.1動物試驗設計…………………………………………………………… ..31
4.2.2先天性免疫活性評估………………………………………….…………...32
4.2.2.1吞噬能力測定(Phagocytosis)……………………………………… .….32
4.2.2.2活性氧測定(Phagoburst)………………………………………………..33
4.2.3適應性免疫活性評估…………………………………………………...…34
4.2.3.1豬週邊血單核細胞分離……….…………………………………… ….34
4.2.3.2單核球細胞分離 (Monocyte) 與刺激………….………………………36
4.2.3.3 T細胞分離與刺激………………………………….………………..... . 37
4.2.3.4 T細胞增殖反應試驗………………………………….………………... 38
4.2.3.5血漿中非特異性抗體分析………………………………..…………… . 39
4.2.3.6細胞激素測定……………………………………………..…………… . 40
4.3以細胞實驗探討發酵豆粕之胜肽免疫調節功能……………………………… 42
4.3.1以豬週邊血單核細胞探討發酵豆粕之免疫活性………………………… ..42
第五章 結果與討論
5.1發酵豆粕蛋白質之萃取及基本成分分析………………………………………..44
5.1.1基本成分分析……………………………………………………………….. ..44
5.1.2 豆粕經發酵後對蛋白質等之影響…………………………………...………44
(1)水溶性蛋白質含量 …………………………………………………………… ..46
(2)水萃液中胜肽含量…………………………………………………………….. ..46
(3)水萃液中總糖含量…………………………………………………………….....47
5.1.3 豆粕與發酵豆粕水萃物分子量大小…………………………………...……47
5.2 以動物實驗探討發酵豆粕之免疫調節功能………………………...………….49
5.2.1豬隻生長性能之變化………………………………………………………….49
5.2.2發酵豆粕對豬隻免疫調節能力之探討……………………………………….50
5.2.2.1 先天性免疫活性評估………………………………………...………….51
5.2.2.2 適應性免疫活性評估…………………………………………...……….54
5.3 以細胞實驗探討發酵豆粕之免疫調節功…………………………………........56
第六章 總結…….........................................................................................................58
結果圖表
參考文獻

表目錄
表一 大豆蛋白質必需胺基酸量……………………………………………………… 5
表二 大豆粕化學成分……………………………………………………………… …6
表三 固態發酵發展之例……………………………………………………...………..9
表四 固態發酵與液態發酵之特性比較…………………………...…………………10
表五 蛋白質、胜肽、胺基酸營養與機能性比較………………………...……………12
表六 牛乳蛋白中的生物活性胜肽……………………………………...……………13
表七 先天性免疫反應防禦摘要………………………………………...……………20
表八 豆粕與發酵豆粕基本成分分析………...............................................................59
表九 豆粕與發酵豆粕水溶性蛋白質、總醣與胜肽含量……………………………60
表十 飼糧中添加抗生素或發酵豆粕對保育前期、保育後期、生長期及肥育期豬隻生長性能之影響……….......................................................................................64
表十一 飼糧中添加抗生素或發酵豆粕之豬隻體內顆粒性白血球與單核球吞噬能力……………………………………………………………...………………65
表十二 飼糧中添加抗生素或發酵豆粕之豬隻體內顆粒性白血球與單核球產生活性氧之能力…………………………………………………………………...65
表十三 飼糧中添加抗生素或發酵豆粕之豬隻血漿中免疫球蛋白 G 含量….…...66
表十四 飼糧中添加抗生素或發酵豆粕對159日齡之豬隻單核球細胞產生 TNF-α 之影響………………………………...............................................................67
表十五 飼糧中添加抗生素或發酵豆粕對159日齡之豬隻T 細胞產生 IL-4 之影響………………………………………….......................................................67


圖目錄
圖一 免疫系統中有功能性的各種白血球………………………..………………….18
圖二 各種免疫刺激活動途徑…………………………………….…………………..23
圖三 發酵豆粕於動物體內免疫調節功能試驗架構………………………………...31
圖四 鄰苯二甲醛 (O-Phthaldialdehyde, OPA) 測定胜肽之原理...……………........47
圖五 豆粕與發酵豆粕蛋白質水萃物分子量分佈…………………...………………61
圖六 植物性多功能胜肽研究開發計劃架構…………………………………...……62
圖七 飼糧中添加抗生素或發酵豆粕對豬隻重量之影響………………………...…63
圖八 飼糧中添加抗生素或發酵豆粕對159日齡之豬隻細胞增生之影響................68
圖九 不同濃度豆粕與發酵豆粕水萃液凍乾物刺激豬隻單核球細胞之條件培養液中 TNF-α 含量…………………………………………………………… ...…69
圖十 不同濃度豆粕、發酵豆粕、消化豆粕與消化發酵豆粕水萃液
凍乾物刺激豬隻 T 細胞之條件培養液中 IL-4 含量………………..………70
dc.language.isozh-TW
dc.title發酵豆粕對肉豬免疫調節功能之影響zh_TW
dc.titleEffect of Fermented Soybean Meal on Immunological Responses of Pigsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee?希樁,陳保基,沈立言
dc.subject.keyword豆粕,發酵,免疫,蛋白質,豬,zh_TW
dc.subject.keywordsoybean meal,fermentation,immune,protein,pig,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2007-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
631.56 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved