請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28319
標題: | 低階多項式自然語言處理之資料映射同時利用雜湊達成特
徵空間壓縮 Low-degree Polynomial Mapping of NLP Data and Features Condensing by Hashing |
作者: | Po-Han Chung 鐘博瀚 |
指導教授: | 林智仁 |
關鍵字: | 自然語言處理,支持向量機,多項式映射, Natural language processing,Support vector machine,Polynomial mapping, |
出版年 : | 2011 |
學位: | 碩士 |
摘要: | Recently, many people handle natural language processing (NLP) tasks via support vector machines (SVM) with polynomial kernels. However, kernel computation is time consuming. Chang et al. (2010) have proposed mapping data by low-degree polynomial functions and applying fast linear-SVM methods. For data with many features, they have considered condensing data to effectively solve some memory and computational difficulties. In this thesis, we investigate Chang et al.'s methods and give implementation details. We conduct experiments on four NLP tasks to show the viability of our implementation. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28319 |
全文授權: | 有償授權 |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。