Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林智仁
dc.contributor.authorPo-Han Chungen
dc.contributor.author鐘博瀚zh_TW
dc.date.accessioned2021-06-13T00:05:05Z-
dc.date.available2011-08-18
dc.date.copyright2011-08-18
dc.date.issued2011
dc.date.submitted2011-08-08
dc.identifier.citationN. Askitis. Fast and compact hash tables for integer keys. In Proceeding of the
32nd Australasian Computer Science Conference, pages 101-110, 2009.
B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 144-152. ACM Press, 1992.
C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Y.-W. Chang. Low-degree polynomial mapping of data for svm. Master's thesis,
Department of Computer Science and Information Engineering, National Taiwan
University, 2009.
Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. Training
and testing low-degree polynomial data mappings via linear SVM. Journal of
Machine Learning Research, 11:1471-1490, 2010. URL http://www.csie.ntu.
edu.tw/~cjlin/papers/lowpoly_journal.pdf.
C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273-297, 1995.
K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online
passive-aggressive algorithms. Journal of Machine Learning Research, 7:551-585,
2006.
R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order
information for training SVM. Journal of Machine Learning Research, 6:1889-1918, 2005. URL http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.
pdf.
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR:
A library for large linear classi cation. Journal of Machine Learn-ing Research, 9:1871-1874, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/
papers/liblinear.pdf.
Y. Goldberg and M. Elhadad. splitSVM: Fast, space-e cient, non-heuristic, polynomial
kernel computation for NLP applications. In Proceedings of the 46st An-nual Meeting of the Association of Computational Linguistics (ACL), 2008.
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A
dual coordinate descent method for large-scale linear SVM. In Proceedings of the
Twenty Fifth International Conference on Machine Learning (ICML), 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.
H. Isozaki and H. Kazawa. E cient support vector classi ers for named entity
recognition. In Proceedings of COLING, pages 390-396, 2002.
T. Joachims. Making large-scale SVM learning practical. In B. Sch olkopf, C. J. C.
Burges, and A. J. Smola, editors, Advances in Kernel Methods-Support Vector
Learning, pages 169-184, Cambridge, MA, 1998. MIT Press.
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements
to Platt's SMO algorithm for SVM classi er design. Neural Computation,
13:637-649, 2001.
T. Kudo and Y. Matsumoto. Japanese dependency structure analysis based on
support vector machines. In Proceedings of the 2000 Joint SIGDAT conference on
Empirical methods in natural language processing and very large corpora, 2000.
T. Kudo and Y. Matsumoto. Fast methods for kernel-based text analysis. In
Proceedings of the 41st Annual Meeting of the Association of Computational Lin-
guistics (ACL), 2003.
P. Li, A. Shrivastava, J. Moore, and A. C. K onig. Hashing algorithms for largescale
learning. Technical report, Cornell University, 2011. URL http://www.
stat.cornell.edu/~li/reports/HashLearning.pdf.
E. F. T. K. Sang. Introduction to the conll-2002 shared task: Languageindependent
named entity recognition. In Proceeding of CoNLL-2002, 2000.
E. F. T. K. Sang and S. Buchholz. Introduction to the conll-2000 shared task:
Chunking. In Proceeding of CoNLL-2000 and LLL-2000, pages 127-132, 2000.
M. Sassano. Linear-time dependency analysis for japanese. In Proceeding of COL-
ING, pages 8-14, 2004.
A. Sumida, N. Yoshinaga, and K. Torisawa. Boosting precision and recall of hyponymy
relation acquisition from hierarchical layouts in wikipedia. In Proceeding
of LREC, pages 2462-2469, 2008.
N. Yoshinaga and M. Kitsuregawa. Kernel slicing: Scalable online training with
conjunctive features. In Proceedings of the 23rd International Conference on Com-
putational Linguistics, pages 1245-1253, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/28319-
dc.description.abstractRecently, many people handle natural language processing (NLP) tasks via support vector machines (SVM) with polynomial kernels. However, kernel computation is time consuming. Chang et al. (2010) have proposed mapping data by low-degree polynomial functions and applying fast linear-SVM methods. For data with many features, they have considered condensing data to effectively solve some memory and computational difficulties. In this thesis, we investigate Chang et al.'s methods and give implementation details. We conduct experiments on four NLP tasks to show the viability of our implementation.en
dc.description.provenanceMade available in DSpace on 2021-06-13T00:05:05Z (GMT). No. of bitstreams: 1
ntu-100-R98944031-1.pdf: 2284755 bytes, checksum: 29eaac300852983bd2bd8123f2e59567 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i
中文摘要: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :ii
ABSTRACT : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : iii
LIST OF TABLES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vi
CHAPTER
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Linear SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Nonlinear SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Decomposition Methods for Nonlinear SVM . . . . . . . . . . . 6
2.4 Decomposition Methods for Linear SVM . . . . . . . . . . . . . 8
III. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Low-degree Polynomial Mappings . . . . . . . . . . . . . . . . . 10
3.2 Importance of Condensing Features . . . . . . . . . . . . . . . . 11
3.3 Training by Decomposition Methods . . . . . . . . . . . . . . . 12
3.4 Implementation of the Hash Table . . . . . . . . . . . . . . . . 14
3.5 Implementation for Binary Features . . . . . . . . . . . . . . . 15
IV. Kernel Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Kernel Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Kernel Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Kernel Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
V. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 Task Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
VI. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 29
BIBLIOGRAPHY : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
dc.language.isozh-TW
dc.subject多項式映射zh_TW
dc.subject自然語言處理zh_TW
dc.subject支持向量機zh_TW
dc.subjectNatural language processingen
dc.subjectPolynomial mappingen
dc.subjectSupport vector machineen
dc.title低階多項式自然語言處理之資料映射同時利用雜湊達成特
徵空間壓縮
zh_TW
dc.titleLow-degree Polynomial Mapping of NLP Data and
Features Condensing by Hashing
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林軒田,李育杰
dc.subject.keyword自然語言處理,支持向量機,多項式映射,zh_TW
dc.subject.keywordNatural language processing,Support vector machine,Polynomial mapping,en
dc.relation.page31
dc.rights.note有償授權
dc.date.accepted2011-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved