Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27998
標題: 以基本解法結合數值轉換求解非均質材料上之勢能和擴散導問題
The Method of Fundamental Solutions with Parameter Transformations for Potential and Diffusion in
Non-homogeneous Material Problems
作者: Je-Jium Chu
朱哲均
指導教授: 楊德良(Der-Liang Young)
關鍵字: 基本解法,非均質,勢能方程式,擴散方程式,無網格,功能梯度材料,熱傳導,柯西荷夫轉換法,解析解,有限差分,
The method of fundamental solutions,non-homogeneous,potential equation,diffusion equation,meshless,functionally graded materials (FGMs),nonlinear heat conductivity,Kirchhoff’s transformation,finite difference method (FDM),analytical solution,
出版年 : 2007
學位: 碩士
摘要: 本論文主要在探討基本解法以及數值轉換的結合,去求解非均質材料的勢能和擴散問題。基本解法是屬於邊界類型的無網格方法。對於非均質的勢能或是擴散問題,無法直接使用基本解法去模擬。非均質材料在本篇論文中分為兩種類型,一為功能梯度材料,一是材料內部的熱傳導係數不為定值。功能梯度材料是指構成要素(組成、架構)沿濃度方向由一側向另一側呈現連續梯度變化。熱在功能梯度材料上的擴散問題能藉由指定數學轉換式轉換,在使用基本解法求解。而勢能問題在熱傳導係數不為定值的材料上,能使用柯西荷夫轉換法去轉換,再利用基本解法求解。經由轉換求得非均質材料的勢能以及擴散問題的答案,都能與解析解或者使用有限差分的方法所求得的答案一致,因此,基本解法也許能在非均質問題上做更廣泛的研究與應用。
This thesis mainly describes the combination of the method of fundamental solutions (MFS) and numerical transformation to solve potential and diffusion problems in non-homogeneous materials. The MFS is a meshless method which belongs to boundary-type method. For the potential and diffusion problems in non-homogeneous materials, the results can not be simulated by the MFS directly. Non-homogeneous materials can demarcate two types in this thesis, one is functionally graded materials (FGMs); one is the heat conductivity which is not constant inside the material. FGMs is a kind of material which is composed by the materials varying from one side to another in the direction of density continuously. The transient heat diffusion problems in FGMs can be solved by the MFS employing specific the transformation’s formulation. Potential problems in non-homogeneous materials can utilize the Kirchhoff’s transformation to transfer to be linear and the results also can be solved by the MFS. The results of potential and diffusion problems in non-homogeneous materials are simulated after transformation and the results are agreement with using finite difference method or analytical solutions. The MFS is successfully applied to solve potential and diffusion problems.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27998
全文授權: 有償授權
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.56 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved