請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27998完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊德良(Der-Liang Young) | |
| dc.contributor.author | Je-Jium Chu | en |
| dc.contributor.author | 朱哲均 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:32:33Z | - |
| dc.date.available | 2007-08-03 | |
| dc.date.copyright | 2007-08-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-31 | |
| dc.identifier.citation | [1.1] Zheng S. F., Ding K., Denda M., Weng G. J., A Dual Homogenization and Finite-Element Study on the In-Plane Local and Global Behavior of a Nonlinear Coated Fiber Composite, Comput. Methods Appl. Mech. Eng., Vol. 183, pp. 141-155, 2000.
[1.2] Chen H. T. and Lin J. Y., Hybrid Laplace Transform Technique for Non-Linear Transient Thermal Problems, Int. J. Heat Mass Transfer, Vol. 34, pp. 1301-1308, 1991. [1.3] Serdyuk Y. V., Podoltsev A. D. and Gubanski S. M., Numerical Simulations of Dielectric Properties of Composite Material with Periodic Structure, J. Electrostatics, Vol. 63, pp. 1073-1091, 2005. [1.4] Sutradhar A. and Paulino G. H., The Simple Boundary Element Method for Transient Heat Conduction in Functionally Graded Materials, Comput. Methods Appl. Mech. Eng., Vol. 193, pp. 4511-4539, 2004. [1.5] Sutradhar A., Paulino G. H., Gray L. J., Transient Heat Conduction in Homogeneous and Non-homogeneous Materials by the Laplace Transform Galerkin Boundary Element Method, Eng. Anal. Bound. Elem., Vol. 26, pp. 119-132, 2002. [1.6] Ochiai Y., Two-dimensional Steady Heat Conduction in Functionally Gradient Materials by Triple-reciprocity Boundary Element Method, Eng. Anal. Bound. Elem., Vol. 28, pp. 1445-1453, 2004. [1.7] Sladek J., Sladek V., Zhang C., A Local BIEM for Analysis of Transient Heat Conduction with Nonlinear Source Terms in FGMs, Eng. Anal. Bound. Elem., Vol. 28, pp. 1-11, 2004. [1.8] Sladek J., Sladek V., Krivacek J., Zhang C., Local BIEM for Transient Heat Conduction Analysis in 3D Axisymmetric Functionally Graded Solids, Comput. Mech., Vol. 32, pp. 169-176, 2003. [1.9] Bialecki R. and Nowak A. J., Boundary Value Problems in Heat Conduction with Nonlinear Material and Nonlinear Boundary Conduction, Appl. Math. Modeling, Vol. 5, pp. 417-421, 1981. [1.10] Bialecki R. and Kuhn G., Boundary Element Solution of Heat Conduction Problems in Multizone Bodies of Non-Linear Materials, Int. J. Numer. Methods Eng., Vol. 36, pp. 799-809, 1993. [1.11] Bialecki R. and Nahlik R., Solving Nonlinear Steady-State Potential Problems in Homogeneous Bodies Using the Boundary Element Method, Numer. Heat Transf., Part B, Vol. 16, pp. 79-96, 1989. [1.12] Akkuratov Y. N. and Mikhailov V. N., The Method of Boundary Integral Equations for Solving Non-Linear Heat Transmission Problems, U.S.S.R. Comput. Maths. Math. Phys., Vol. 20, Vol. 3, pp. 117-125, 1980. [1.13] Young D. L., Chen K. H., Lee C. W., Novel Meshless Method for Solving the Potential Problems with Arbitrary Domain, J. Comput. Physics, Vol. 209, pp. 290-321, 2005. [1.14] Golberg M. A. and Chen C. S., The Method of Fundamental Solutions for Potential, Helmholtz and Diffusion Problems, In Boundary Integral Method-Numerical and Mathematical Aspects, ed. Golberg M. A., (Computational Mechanics Publications), pp. 103-176, 1998. [1.15] Fairweather G. and Johnston R. L., The Method of Fundamental Solutions for Problems in Potential Theory, In Treatment of Integral Equations by Numerical Methods, eds. Baker C. T. H. and Miller G. F., (Academic Press, London), pp. 349-359, 1982. [1.16] Chen C. S., The Method of Fundamental Solutions and the Quasi-Monte Carlo Method for Poisson’s Equation, in:Lecture Notes in Statistics 106, eds. Niederreiter H. and Shuie P. (Springer, New York), pp. 158-167., 1995. [1.17] Bogomolny A., Fundamental Solution Method for Elliptic Boundary Value Problems, SIAM J. Numer. Anal., Vol. 22, pp. 644-669, 1985. [1.18] Chen W., Numerical Investigation on Convergence of Boundary Knot Method in the Analysis of Homogeneous Helmholtz, Modified Helmholtz and Convection-Diffusion Problems, Comput. Method Appl. Mech. Eng., Vol. 192, pp. 1859-1875, 2003. [1.19] Chen C. S., Rash Y. F., Golberg M. A., A Mesh-free Method for Linear Diffusion Equations, Numer. Heat Transf. Part B, Vol. 33, pp. 469-486, 1998. [1.20] Balakrishnan K. and Ramachandran P. A., The Method of Fundamental Solutions for Linear Diffusion-Reaction Equations, Math. Comput. Model., Vol. 31, pp. 221-237, 2000. [1.21] Shaw R. P., Shaw R. P., Gipson G. S., Interrelated Fynfamental Solutions for Various Heterogeneous Potential Wave and Advective-Diffusion Problems, Eng. Anal. Bound. Elem., Vol. 16, pp. 29-33, 1995. [1.22] Young D. L., Tsai C. C., Murugesan K., Fan C. M., Chen C. W., Time-Dependent Fundamental Solution for Homogeneous Diffusion Problems, Eng. Anal. Bound. Elem., Vol. 29, pp. 1463-1473, 2004. [1.23] Young D. L., Fan C. M., Tsai C. C., Chen C. W., Murugesan K., Eulerian-Lagrangian Method of Fundamental Solutions for Multi-dimensional Advection-diffusion Equation, Int. Math. Forum, Vol. 1, pp. 687-706., 2006. [1.24] Hu S. P., Fan C. M., Chen C. W., Young D. L., Method of Fundamental Solutions for Stokes’ First and second Problems, J. Mech., Vol. 21(1), pp. 31-37, 2005. [2.1] Kupardze V. D., Aleksidze M. A., The Method of Fundamental Equation for the Approximate Solution of Certain Boundary Value Problems, U.S.S.R. Comput. Math. Math. Physis, Vol. 4, pp. 82-126, 1964. [2.2] Fairweather, G., Karageoghis, A., The Method of Fundamental Solutions for Elliptic Boundary Value Problems, Adv. Comput. Math., Vol. 9, pp. 69-95, 1998. [2.3] Fairweather, G., Karageoghis, A., Martin, P. A., The Method of Fundamental Solutions for Scatting and Radiation Problems, Eng. Anal. Bound. Elem., Vol. 27, pp. 759-69, 2003. [2.4] Tsai C. C., Meshless Numerical Method and Their Engineering Applications, Ph.D. thesis, Department of Civil Engineering, Natural Taiwan University, Taiwan, 2002. [2.5] Kythe P. K., Fundamental Solutions for Differential Operators and Applications, Department of Mathematics, University of New Orleans, New Orleans, 1996. [3.1] Yamanoushi M., Koizumi M., Hiraii T., Shiota I., editors. Proceedings of the First International Symposium on Functionally Gradient Materials, Japan, 1990. [3.2] Koizumi M., The Concept of FGM Ceramic Transactions, Functionally Gradient Materials, Vol. 34, pp. 3-10, 1993. [3.3] Cho J. R. and Ha D.Y., Optimal Tailoring of 2D Volume-Fraction Distributions for Heat-Resisting Functionally Graded Materials Using FDM, Comput. Methods Appl. Mech. Eng., Vol. 191, pp. 3195-3221, 2002. [3.4] Tanaka K., Watanabea H., Suganob Y., Poterasuc V. F., A Multicriterial Material Tailoring of a Hollow Cylinder in Functionally Gradient Materials: Scheme to Global Reduction of Thermo Elastic Stresses, Comput. Methods Appl. Mech. Eng., Vol. 135, pp. 369-380, 1996. [3.5] Simoes N. and Tadeu A., 3D Transient Heat Transfer by Conduction and Convection Across a 2D Medium Using a Boundary Element Model, CMES, Vol. 9, pp. 221-233, 2005. [3.6] Godinho L., Tadeu A., Simoes N., Study of Transient Heat Conduction in 2.5D Domain Using the Boundary Element Method, Eng. Anal. Bound. Elem., Vol. 28, pp. 593-606, 2004. [3.7] Sutradhar A. and Paulino G. H., The Simple Boundary Element Method for Transient Heat Conduction in Functionally Graded Materials, Comput. Methods Appl. Mech. Eng., Vol. 193, pp. 4511-4539, 2004 [3.8] Sutradhar A. and Paulino G. H., Gary L. J., Transient Heat Conduction in Homogeneous and Non-Homogeneous Materials by the Laplace Transform Galerkin Boundary Element Method, Eng. Anal. Bound. Elem., Vol. 26, pp. 119-132, 2002. [3.9] Ochiai Y., Two-Dimensional Steady Heat Conduction in Functionally Gradient Materials by Triple-Reciprocity Boundary Element Method, Eng. Anal. Bound. Elem., Vol. 28, pp. 1445-1453, 2004. [3.10] Sladek J., Sladek V., Zhang C., A Local BIEM for Analysis of Transient Heat Conduction with Nonlinear Source Terms in FGMs, Eng. Anal. Bound. Elem., Vol. 28, pp. 1-11, 2004. [3.11] Sladek J., Sladek V., Krivacek J., Zhang C., Local BIEM for Transient Heat Conduction Analysis in 3D Axisymmetric Functionally Graded Solids, Comput. Mech., Vol. 32, pp. 169-176, 2003. [3.12] Chen C. S., Rashed Y. F., Golberg M. A., A mesh-free Method for Linear Diffusion Equations, Numer. Heat Trans., Part B, Vol.33, pp. 469-486, 1998. [3.13] Chen C. S., The Method of Fundamental Solution and the Quasi-Monte Carlo Method for Poisson’s Equation, in Lecture Notes in Statistics 106, eds. H. Niederreiter and P. Shuie, New York, USA, pp. 158-167, 1995. [3.14] Young D. L., Tasi C. C., Murugesan K., Fan C. M., Chen C. W., Time-dependent Fundamental Solutions for Homogeneous Diffusion Problems, Eng. Anal. Bound. Elem., Vol.29, pp. 1463-1473, 2004. [3.15] Young D. L., Tasi C. C., Fan C. M., Direct Approach to Solve Non-homogeneous Diffusion Problems Using Fundamental Solution and Dual Reciprocity Methods, J. Chin. Inst. Eng., Vol.27, pp. 597-609, 2004. [4.1] Brebbia C. A. and Walker S., Boundary Element Techniques in Engineering, Newnes-Butterworths, London, 1980. [4.2] Bialecki R. and Nowak A. J., Boundary Value Problems in Heat Conduction with Nonlinear Material and Nonlinear Boundary Conduction, Appl. Math. Modeling, Vol. 5, pp. 417-421, 1981. [4.3] Bialecki R. and Kuhn G., Boundary Element Solution of Heat Conduction Problems in Multizone Bodies of Non-Linear Materials, Int. J. Numer. Methods Eng., Vol. 36, pp. 799-809, 1993. [4.4] Bialecki R. and Nahlik R., Solving Nonlinear Steady-State Potential Problems in Homogeneous Bodies Using the Boundary Element Method, Numer. Heat Transf., Part B, Vol. 16, pp. 79-96, 1989. [4.5] Akkuratov Y. N. and Mikhailov V. N., The Method of Boundary Integral Equations for Solving Non-Linear Heat Transmission Problems, U.S.S.R. Comput. Maths. Math. Phys., Vol. 20, No. 3, pp. 117-125, 1980. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27998 | - |
| dc.description.abstract | 本論文主要在探討基本解法以及數值轉換的結合,去求解非均質材料的勢能和擴散問題。基本解法是屬於邊界類型的無網格方法。對於非均質的勢能或是擴散問題,無法直接使用基本解法去模擬。非均質材料在本篇論文中分為兩種類型,一為功能梯度材料,一是材料內部的熱傳導係數不為定值。功能梯度材料是指構成要素(組成、架構)沿濃度方向由一側向另一側呈現連續梯度變化。熱在功能梯度材料上的擴散問題能藉由指定數學轉換式轉換,在使用基本解法求解。而勢能問題在熱傳導係數不為定值的材料上,能使用柯西荷夫轉換法去轉換,再利用基本解法求解。經由轉換求得非均質材料的勢能以及擴散問題的答案,都能與解析解或者使用有限差分的方法所求得的答案一致,因此,基本解法也許能在非均質問題上做更廣泛的研究與應用。 | zh_TW |
| dc.description.abstract | This thesis mainly describes the combination of the method of fundamental solutions (MFS) and numerical transformation to solve potential and diffusion problems in non-homogeneous materials. The MFS is a meshless method which belongs to boundary-type method. For the potential and diffusion problems in non-homogeneous materials, the results can not be simulated by the MFS directly. Non-homogeneous materials can demarcate two types in this thesis, one is functionally graded materials (FGMs); one is the heat conductivity which is not constant inside the material. FGMs is a kind of material which is composed by the materials varying from one side to another in the direction of density continuously. The transient heat diffusion problems in FGMs can be solved by the MFS employing specific the transformation’s formulation. Potential problems in non-homogeneous materials can utilize the Kirchhoff’s transformation to transfer to be linear and the results also can be solved by the MFS. The results of potential and diffusion problems in non-homogeneous materials are simulated after transformation and the results are agreement with using finite difference method or analytical solutions. The MFS is successfully applied to solve potential and diffusion problems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:32:33Z (GMT). No. of bitstreams: 1 ntu-96-R94521323-1.pdf: 1598328 bytes, checksum: 8e53c2f2ac1d8270d91d744f63a7aaaf (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書i
誌謝ii 中文摘要iii Abstract iv List of Figures vii Symbols ix Chapter 1 Introduction 1.1 Motivations 1 1.2 Objective of the present thesis 4 1.3 Organization of the thesis 4 References 6 Chapter 2 Numerical scheme-The Method of Fundamental Solutions 2.1 Introduction 9 2.2 The theory of MFS 10 2.2.1 Laplace problems 12 2.2.2 Diffusion problems 13 References 16 Chapter 3 The MFS with Parameter Transformation for Functionally Graded Materials Heat Problems 3.1 Introduction 17 3.2 Governing equation 18 3.3 Result and discussions 21 3.4 Conclusions 26 References 34 Chapter 4 The MFS with Kirchhoff’s Transformation for Steady State Nonlinear Material Heat Problems 4.1 Introduction 36 4.2 Numerical scheme 37 4.3 Result and discussions 39 4.4 Conclusions 45 References 58 Chapter 5 Conclusions and Future Works 5.1 Conclusions 59 5.2 Future Works 60 | |
| dc.language.iso | en | |
| dc.subject | 解析解 | zh_TW |
| dc.subject | 有限差分 | zh_TW |
| dc.subject | 基本解法 | zh_TW |
| dc.subject | 非均質 | zh_TW |
| dc.subject | 勢能方程式 | zh_TW |
| dc.subject | 擴散方程式 | zh_TW |
| dc.subject | 無網格 | zh_TW |
| dc.subject | 功能梯度材料 | zh_TW |
| dc.subject | 熱傳導 | zh_TW |
| dc.subject | 柯西荷夫轉換法 | zh_TW |
| dc.subject | diffusion equation | en |
| dc.subject | potential equation | en |
| dc.subject | non-homogeneous | en |
| dc.subject | The method of fundamental solutions | en |
| dc.subject | functionally graded materials (FGMs) | en |
| dc.subject | meshless | en |
| dc.subject | analytical solution | en |
| dc.subject | finite difference method (FDM) | en |
| dc.subject | Kirchhoff’s transformation | en |
| dc.subject | nonlinear heat conductivity | en |
| dc.title | 以基本解法結合數值轉換求解非均質材料上之勢能和擴散導問題 | zh_TW |
| dc.title | The Method of Fundamental Solutions with Parameter Transformations for Potential and Diffusion in
Non-homogeneous Material Problems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱家麟,許泰文,廖清標,陳哲維 | |
| dc.subject.keyword | 基本解法,非均質,勢能方程式,擴散方程式,無網格,功能梯度材料,熱傳導,柯西荷夫轉換法,解析解,有限差分, | zh_TW |
| dc.subject.keyword | The method of fundamental solutions,non-homogeneous,potential equation,diffusion equation,meshless,functionally graded materials (FGMs),nonlinear heat conductivity,Kirchhoff’s transformation,finite difference method (FDM),analytical solution, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
