請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27773
標題: | 機器學習之特徵選擇-基於正交實驗的探討 Feature Selection Based on Iterative Orthogonal Experimental Design |
作者: | Shih-Chieh Yen 顏士傑 |
指導教授: | 許永真(Yung-jen Hsu) |
關鍵字: | 機器學習,特徵選擇,正交實驗, Feature Selection,Orthogonal Experimental Design, |
出版年 : | 2007 |
學位: | 碩士 |
摘要: | 在機器學習領域當中,特徵選擇一直以來都是一個重要的課題,尤其以行為辨識(Activity Recognition)而言,我們利用許多不同的感應器來擷取各種大量的資訊,假如能透過特徵選擇的技術來挑選出重要特徵,將有許多好處,例如增快辨識速度、提高辨識準確度等等。本論文提出一個基於正交實驗的特徵選擇法,並以循序收納選擇法(Sequential Forward Selection)為基準,比較並探討此法的優劣與適用性。 Feature selection is an important issue in the problem of machine learning. Especially in the domain of activity recognition, many researchers try to make use of multiple heterogeneous sensors and thus receive a large amount of signals. Many features can be extracted, hence feature selection becomes more important. In this thesis, we propose a feature selection method based on orthogonal experimental design and compare this method with equential forward feature selection in terms of the accuracy of the model induced by the selected feature subset versus the number of treatments and the number of selected features. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27773 |
全文授權: | 有償授權 |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 610.24 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。