Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26923
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃坤?(Kuen-Shyang Hwang)
dc.contributor.authorYang-Liang Fanen
dc.contributor.author范揚樑zh_TW
dc.date.accessioned2021-06-08T07:32:35Z-
dc.date.copyright2008-07-03
dc.date.issued2008
dc.date.submitted2008-06-20
dc.identifier.citation1.K. Schwaytzwalder, “Injection Molding of Ceramic Materials”, Am. Ceram. Soc. Bull., 1949, Vol. 28, pp. 459-461.
2.J. R. G. Wiech, “Method and Means for Removing Binders from a Green Body”, U.S. Patent 4,305,756, 1981.
3.R. M. German, “Powder Injection Molding”, Metal Powder Industries Federation, Princeton, NJ, 1990, pp. 175-218.
4.M. J. Edirisinghe and J. R. G. Evans, “Review: Fabrication of Engineering Ceramics by Injection Moulding.Ⅰ: Material Selection”, Int. J. High Technol. Ceram., 1986, Vol. 2, pp. 1-31.
5.黃坤祥, “粉末冶金學”, 中華民國粉末冶金協會,第二版,台北, 2003, p. 247.
6.T. Y. Chan and S. T. Lin, “Effects of Stearic Acid on the Injection Molding of Alumina”, J. Am. Ceram. Soc., 1995, Vol. 78, pp. 2746-2752.
7.K. Lindqvist, E. Carlstrom, M. Persson, and R. Carlsson, “Organic Silanes and Titanates as Processing Additives for Injection Molding of Ceramics”, J. Am. Ceram. Soc., 1989, Vol. 72, pp. 99-103.
8.B. K. Lograsso, A. Bose, B. J. Carpenter, C. I. Chung, K. F. Hens, D. Lee, S. T. Lin, R. M. German, P. F. Murley, B. O. Rhee, C. M. Sierra, and J. Warren, “Injection Molding of Carbonyl Iron with Polyethylene Wax”, Int. J. Powder Metall., 1989, Vol. 25, pp. 337-348.
9.Y. M. Lin, B. Y. Huang, and X. H. Qu, “Improvement of Rheological and Shape Retention Properties of Wax-based MIM Binder by Multi-polymer Components”, Trans. Nonferrous Met. Soc. China, 1999, Vol. 9, pp. 22-29.
10.K. C. Hsu and G. M. Lo, “Effect of Binder Composition on Rheology of Iron Powder Injection Moulding Feedstock: Experimental Design”, Powder Metall., 1996, Vol. 39, pp. 286-290.
11.S. J. Stedman, J. R. G. Evans, and J. Woodthorpe, “A Method for Selecting Organic Materials for Ceramic Injection Moulding”, Ceram. Int., 1990, Vol. 16, pp. 107-113.
12.V. K. Pujari, “Effect of Powder Characteristics on Compounding and Green Microstructure in the Injection-Molding Process”, J. Am. Ceram. Soc., 1989, Vol. 72, pp. 1981-1984.
13.C. M. Kipphut and R. M. German, “Powder Selection for Shape Retention in Powder Injection Molding”, Int. J. Powder Metall., 1991, Vol. 27, pp. 117-124.
14.T. Hartwig, G. Veltl, H. Kunze, R. Scholl, and B. Kieback, “Powder for Metal Injection Molding”, J. Eur. Ceram. Soc., 1998, Vol. 18, pp. 1211-1216.
15.D. F. Heaney, R. Zauner, C. Binet, K. Cowan, and J. Piemme, “Variability of Powder Characteristics and Their Effect on Dimensional Variability of Powder Injection Moulded Components”, Powder Metall., 2004, Vol. 47, pp. 145-150.
16.R. M. German, “Homogeneity Effects on Feedstock Viscosity in Powder Injection Molding”, J. Am. Ceram. Soc., 1994, Vol. 77, pp. 283-285.
17.R. T. Fox and D. Lee, “Optimization of Metal Injection Molding: Experimental Design”, Int. J. Powder Metall., 1991, Vol. 26, pp. 233-243.
18.G. Fu, N. H. Loh, S. B. Tor, Y. Murakoshi, and R. Maeda, “Effects on Injection Molding Parameters on the Production of Microstructures by Micropowder Injection Molding”, Mater. Manuf. Process., 2005, Vol. 20, pp. 977-985.
19.K. N. Hunt and J. R. G. Evans, “Computer Modeling of the Origin of Defects in Ceramic Injection-Moulding. PartⅡ: Shrinkage Voids”, J. Mater. Sci., 1991, Vol. 26, pp. 292-300.
20.B. Kostic, T. Zhang, and J. R. G. Evans, “Effect of Molding Conditions on Residual Stresses in Powder Injection Molding”, Int. J. Powder Metall., 1993, Vol. 23, pp. 15-21.
21.C. D. Han, “Stress Birefringence Patterns in Molten Polymers during the Molding-Filling and Cooling Process”, J. Appl. Polym. Sci., 1974, Vol. 18, pp. 3581-3592.
22.J. Kubat, J. Petterman and M. Riydhal, “Internal Stresses in Polyethylene as Related to its Structure”, Mater. Sci. Eng., 1975, Vol. 19, pp. 185-191.
23.R. T. Fox and D. Lee, “Analysis of Temperature Effects during Cooling in Powder Injection Molding”, Int. J. Powder Metall., 1994, Vol. 30, pp. 221-229.
24.M. J. Edirisinghe and J. R. G. Evans, “ Properties of Ceramic Injection-Moulding Formulation. PartⅡ: Integrity of Moulding”, J. Mater. Sci., 1987, Vol. 22, pp. 2267-2273.
25.R. V. B. Oliveria, V. Soldi, M. C. Fredel, A. T. N. Pires, “Ceramic Injection Moulding: Influence of Specimen Dimensions and Temperature on Solvent Debinding Kinetics”, J. Mater. Process. Technol., 2005, Vol. 160, pp. 213-220.
26.R. M. German, “Theory of Thermal Debinding”, Int. J. Powder Metall., 1987, Vol. 23, pp. 237-245.
27.C. E. Finn, “Vacuum Binder Removal and Collection”, Int. J. Powder Metall., 1991, Vol. 27, pp. 127-132.
28.M. Bloemacher and D. Weinand, “CatamoldTM-A New Direction for Powder Injection Molding”, J. Mater. Process. Technol., 1997, Vol. 63, pp. 918-922.
29.K. P. Johnson, “Process for Fabricating Parts from Particulate Material”, U. S. Patent No. 4,765,950, 1988.
30.K. S. Hwang and Y. M. Hsieh, “Comparative Study of Pore Structure Evolution during Solvent and Thermal Debinding of Powder Injection Molded Parts”, Metall. Mater. Trans. A, 1996, Vol. 27A, pp. 245-253.
31.謝永明 ,“金屬射出成形溶劑脫脂機構之研究”, 1993, 國立台灣大學碩士論文, pp. 94-97.
32.E. J. Westcot, C. Binet, and R. M. German, “In Situ Dimensional Change, Mass Loss and Mechanisms for Solvent Debinding of Powder Injection Moulded Components”, Powder Metall., 2003, Vol. 46, pp. 61-67.
33.S. T. Lin and R. M. German, “Extraction Debinding of Injection Molded Parts by Condensed Solvent”, Powder Metall. Int., 1989, Vol. 21, pp. 19-24.
34.B. Zhu, X. Qu, and Y. Tao, “Mathematical Model for Condensed- Solvent Debinding Process of PIM”, J. Mater. Process. Technol., 2003, Vol. 142, pp. 487-492.
35.T. S. Shivashankar and R. M. German, “Effective Length Scale for Predicting Solvent-Debinding Times of Components Produced by Powder Injection Molding”, J. Am. Ceram. Soc., 1999, Vol. 85, pp. 1146-1152.
36.蘇少欽, “金屬粉末射出成形溶劑脫脂製程中缺陷產生原因及解決方法”, 2005, 國立台灣大學碩士論文, pp. 43-44.
37.H. K. Lin and K. S. Hwang, “In Situ Dimensional Changes of Powder Injection Molded Compacts during Solvent Debinding”, Acta Mater., 1998, Vol. 46, pp. 4303-4309.
38.S. C. Hu and K. S. Hwang, “Length Change and Deformation of Powder Injection-Molded Compacts during Solvent Debinding”, Metall. Mater. Trans. A, 2000, Vol. 31A, pp.1473-1478.
39.N. F. Liau and S. T. Lin, “Controlling the Structural Integrity of Injection Molded Parts in Debinding and Sintering by Experimental Design,” Mater. Manuf. Process., 1997, Vol. 12, pp. 661-671.
40.S. Li, B. Huang, Y. Li, X. Qu, S. Liu, and J. Fan, “A New Type of Binder for Metal Injection Molding”, J. Mater. Process. Technol., 2003, Vol. 137, pp. 70-73.
41.W. Yang and M. Hon, “In-situ Evaluation of Dimensional Variations during Water Extraction from Alumina Injection-Molding Parts”, J. Eur. Ceram. Soc., 2000, Vol. 20, pp. 851-858.
42.B. K. Lograsso and R. M. German, “Thermal Debinding of Injection Molded Powder Compact”, Powder Metall. Int., 1990, Vol. 22, pp. 17-22.
43.J. K. Wright, J. R. G. Evans, and M. J. Edirisinghe, “Degradation of Polyolefin Blends Used for Ceramic Injection Molding”, J. Am. Ceram. Soc., 1989, Vol. 72, pp. 1822-1828.
44.Y. Kankawa, “Effects of Polymer Decomposition Behavior on Thermal Debinding Process in Metal Injection Molding”, Mater. Manuf. Process., 1997, Vol. 12, pp. 681-690.
45.J. R. G. Evans and M. J. Edirisinghe, “Interfacial Factors Affecting the Incidence of Defects in Ceramic Molding”, J. Mater. Sci., 1991, Vol. 26, pp. 2081-2088.
46.G. Aggarwal, S.-J. Park, I. Smid, and R. M. German, “Master Decomposition Curve for Binder Used in Powder Injection Molding”, Metall. Mater. Trans. A, 2007, Vol. 38, pp. 606-614.
47.J. C. Kim, S. S. Ryu, H. Lee, and I. H. Moon, “Metal Injection Molding of Nanostructural W-Cu Composite Powder”, Int. J. Powder Metall., 1999, Vol. 35, pp. 47-55.
48.K. S. Hwang, “Fundamentals of Debinding Processes in Powder Injection Molding”, Rev. Part. Mater., 1996, Vol. 4, pp. 71-103.
49.K. E. Hedina, J. W. Halloran, M. Kaviany, and A. Oliveira, “Defect Formation during Binder Removal in Ethylene Vinyl Acetate Filled System”, J. Mater. Sci., 1999, Vol. 34, pp. 3281-3290.
50.林恆光, “金屬射出成形溶劑脫脂製程缺陷之成因探討”, 1996, 國立台灣大學碩士論文, p. 27.
51.C. Dong and H. K. Bowen, “Hot-Stage Study of Bubble Formation during Binder Burnout”, J. Am. Ceram. Soc., 1989, Vol. 72, pp. 1082-1087.
52.C. M. Kipphut and R. M. German, “Powder Selection for Shape Retention in Powder Injection Moulding”, Int. J. Powder Metall., 1991, Vol. 27, pp. 117-124.
53.J. C. Moller and D. Lee, “Constitutive Behavior of a Powder/Binder System: Molding and Thermal Debinding”, Int. J. Powder Metall., 1994, Vol. 30, pp. 103-114.
54.K. S. Hwang and T. H. Tsou, “Thermal Debinding of Powder Injection Molded Parts: Observations and Mechanisms”, Metall. Mater. Trans. A, 1992, Vol. 23A, pp. 2775-2782.
55.J. E. Japka, “Iron Powder for Metal Injection Molding”, Int. J. Powder Metall., 1990, Vol. 27, pp. 107-114.
56.L. Moballegh, J. Morshedian, and M. Esfandeh, “Copper Injection Molding Using a Thermoplastic Binder Based on Paraffin Wax”, Mater. Lett., 2005, Vol. 59, pp. 2832-2837.
57.S. P. Srivastava, J. Handoo, K. M. Agrawal, and G. C. Joshi, “Phase-Transition Stuides in n-Alkanes and Petroleum-Related Waxes-A Review”, J. Phys. Chem. Solids, 1993, Vol. 54, pp. 639-670.
58.J. Brandrup and E. H. Immergut, “Polymer Handbook”, 3rd ed., Wiley- Interscience, New York, NY, 1966, pp. Ⅵ 347-51.
59.R. B. Richards, “The Phase Equilibria between a Crystalline Polymer and Solvents. PartⅡ: The Effect of Solvent Type on the Solubility and Swelling of Polyethylene”, Trans. Faraday Soc., 1946, Vol. 42, pp. 20-28.
60.M. T. Zaky, “Effect of Solvent Debinding Variables on the Shape Maintenance of Green Molded Bodies”, J. Mater. Sci., 2004, Vol. 39, pp. 3397-3402.
61.R. C. Weast, “Handbook of Chemistry and Physics”, 86th ed., CRC Press, Inc., Boca Raton, Florida, 2005~2006, pp. 3- 4-522.
62.Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standards, D 790-81, 401, 1984.
63.胡紹中, “粉末射出成形工件之尺寸穩定性研究”, 2000, 國立台灣大學博士論文, pp. 60-61.
64.Standard Test Method for Density, Oil Content, and Interconnected Porosity of Sintered Metal Structural Parts and Oil-impregnated Bearings, Annual Book of ASTM Standards, B 328-96, 1996.
65.W. Q. Guan, S. F. Li, R. X. Yan, S. K. Tang, and C. Quan, “Comparison of Essential Oils of Clove Buds Extracted with Supercritical Carbon Dioxide and Other Three Traditional Extraction Methods”, Food Chem., 2007, Vol. 101, pp. 1558-1564.
66.Standard Test Method for Maximum Pore Diameter and Permeability of Rigid Porous Filters for Laboratory Use, Annual Book of ASTM Standards, E 128-61, 1981.
67.S. K. Datta, S. N. Tewari, J. E. Gatica, W. Shih, and L. Bentsen, “Copper Alloy-Impregnated Carbon-Carbon Hybrid Composites for Electronic Packaging Applications”, Metall. Mater. Trans. A, 1999, Vol. 30, pp. 175-181.
68.V. Djokovic, T. N. Mtshali, and A. S. Luyt, “The Influence of Wax Content on the Physical Properties of Low-Density Polyethylene-Wax Blends”, Polym. Int., 2003, Vol. 52, pp. 999-1004.
69.J. Brandrup, E. H. Immergut, and E. A. Grulke, “Polymer Handbook”, 4th ed., Wiley-Interscience, New York, NY, 1999, pp. Ⅴ9-19.
70.K. C. Tam, S. P. Yap, M. L. Foong, and N. H. Loh, “Metal Injection Molding: Effects of the Vinyl Acetate Content on Binder Behavior”, J. Mater. Process. Technol., 1997, Vol. 67, pp. 120-125.
71.李宏仁,”粒徑對金屬射出成形製程中溶劑脫脂行為之影響”, 1998, 國立台灣大學碩士論文, pp. 85-86.
72.S. J. Monte and G. Sugerman, “Processing of Composites with Titanate Coupling Agent- A Review”, Polym. Eng. Sci., 1984, Vol. 24, pp. 1369-1382.
73.D. M. Bigg, “Rheological Analysis of Highly Loaded Polymeric Composites Filled with Non-Agglomerating Spherical Filler Particles”, Polym. Eng. Sci., 1982, Vol. 22, pp. 512-518.
74.K. Lindqvist, E. Carlstrom, M. Persson, and R. Carlsson, “Organic Silanes and Titanates as Processing Additives for Injection Molding of Ceramics”, J. Am. Ceram. Soc., 1989, Vol. 72, pp. 99-103.
75.G. Sugerman and S. J. Monte, “Neoalkoxy Organo-Titanates and Organo-Zirconates Useful as Coupling and Polymer Processing Agents”, U.S. Patent 4,623,738, 1986.
76.C. D. Han, C. Sanford, and H. J. Yoo, “Effects of Titanate Coupling Agents on the Rheological and Mechanical Properties of Filled Polyolefins”, Polym. Eng. Sci., 1978, Vol. 18, pp. 849-854.
77.Y. W. Leong, M. B. Abu Bakar, Z. A. Mohd. Ishak, and A. Ariffin, “Effects of Filler Treatments on the Mechanical, Flow, Thermal, and Morphological Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites”, J. Appl. Polym. Sci., 2005, Vol. 98, pp. 413-426.
78.D. J. Williams, “Polymer Science and Engineering”, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971, pp. 163-192.
79.S. Li, B. Huang, Y. Li, X. Qu, S. Liu, and J. Fan, “A New Type of Binder for Metal Injection Molding”, J. Mater. Process. Technol., 2003, Vol. 137, pp. 70-73.
80.S. F. Sun, “Physical Chemistry of Macromolecules: Basic Principles and Issues”, 2nd ed., Wiley-Interscience, New York, NY, 2004, pp. 67-79.
81.P. J. Flory, “Principles of Polymer Chemistry”, Cornel University Press., Ithaca, NY, 1953, pp. 495-518.
82.J. H. Hildebrand and R. L. Scott, “The Solubility of Nonelectrolytes”, 3rd ed., Reinhold Publishing Corp., New York, NY, 1950, pp. 135-154.
83.G. B. Kupperblatt and C. I. Chung, “Evaluation of Solubility in Powder Injection Molding Binders”, Int. J. Powder Metall., 1993, Vol. 29, pp. 229-237.
84.M. Sen and O. Güven, “Determination of Solubility Parameter of Poly(N-Vinyl 2-Pyrrolidon/ Ethylene Glycol Dimethacrylate) Gels by Swelling Measurements”, J. Polym. Sci. Polym. Phys., 1998, Vol. 36, pp. 213-219.
85.R. Makitra, Y. Pyrih, E. Sagladko, A. Turoskiv, and G. Zaikov: “Generalization of Polymer/Organic Solvent Interaction Processes by Means of Linear Polyparameter Equations.ⅠSwelling of Polyethylene”, J. Appl. Polym. Sci., 2001, Vol. 81, pp. 3133-3140.
86.M. J. Cima, J. A. Lewis, and D. Devoe, “Binder Distribution in Ceramic Greenware during Thermolysis”, J. Am. Ceram. Soc., 1989, Vol. 72, pp. 1192-1199.
87.Y. Li, F. Jiang, L. Zhao, and B. Huang: “Critical Thickness in Binder Removal Process for Injection Molded Compacts”, Mater. Sci. Eng. A, 2003, Vol. 362, 292-299.
88.V. A. Krauss, A. A. M. Oliveria, A. N. Klein, H. A. Al-Qureshi, and M. C. Fredel, “A Model for PEG Removal from Alumina Injection Moulded Parts by Solvent Debinding”, J. Mater. Process. Technol., 2007, Vol. 182, pp. 268-273.
89.黃坤祥, “粉末冶金學”, 中華民國粉末冶金協會,台北, 2003, pp. 402-404.
90.D. S. Tsai and W. W. Chen, “Solvent Debinding Kinetics of Alumina Green Bodies by Powder Injection Molding”, Ceram. Int., 1995, Vol. 21, pp. 257-264.
91.J. Crank, “The Mathematics of Diffusion”, 2nd ed., Clarendon Press, Oxford, MS, 1975, pp. 56-60.
92.J. A. Lewis, M. A Graller, and D. P. Bentz, “Computer Simulations of Binder Removal from 2-D and 3-D Model Particulate Bodies”, J. Am. Ceram. Soc., 1996, Vol. 79, pp. 1377-1388.
93.S. B. Guo, H. A. Zhang, R. F. Zhang, B. H. Duan, M. L. Qin, X. B. He, and X. H. QU, “Research on Solvent Debinding Process of Titanium Alloy Compacts by Metal Injection Molding”, Rare Metal Mater. Eng., 2007, Vol. 36, pp. 537-540.
94.W. J. Tseng, D.-M. Liu, and C.-K. Hsu, “Influence of Stearic Acid on Suspension Structure and Green Microstructure of Injection-Molded Zirconia”, Ceram. Int., 1999, Vol. 25, pp. 191-195.
95.H. H. Angermann and O. Van Der Biesst, “Removal of Low Molecular Weight Components in Thermal Debinding of MIM Compacts”, Int. J. Powder Metall., 1994, Vol. 30, pp. 445-452.
96.K. C. Hsu, C. C. Lin, and G. M. Lo, “The Effect of Wax Composition on the Injection Molding of Carbonyl Iron Powder with LDPE”, Can. Metall. Q., 1996, Vol. 35, pp. 181-187.
97.R. M. German, “Sintering Theory and Practice”, John Wiley&Sons, Inc., New York, NY, 1996, p. 155.
98.J. H. Song, J. R. G. Evans, M. J. Edirisinghe, and E. H. Twizell, “Multiparameter Mapping of Polymer Properties for Fast Thermolysis of Powder Moldings”, J. Appl. Polym. Sci., 1998, Vol. 70, pp. 545-557.
99.J. A. Lewis, “Binder Removal from Ceramics”, Annu. Rev. Mater. Sci., 1997, Vol. 27, pp. 147-173.
100.M. R. Barone, and J. C. Ulicny, “Liquid-Phase Transport during Removal of Organic Binders in Injection-Molded Ceramics”, J. Am. Ceram. Soc., Vol. 73, pp. 3323-3333.
101.T. Chartier, F. Bordet, E. Delhomme, J. F. Baumard, “Extraction of Binders from Green Ceramic Bodies by Supercritical Fluid: Influence of the Porosity”, J. Eur. Ceram. Soc., 2002, Vol. 22, pp. 1403-1409.
102.R. C. Weast, “Handbook of Chemistry and Physics”, 87th ed., CRC Press, Inc., Boca Raton, Florida, 2006~2007, p. 6-133.
103.R. C. Weast, “Handbook of Chemistry and Physics”, 84th ed., CRC Press, Inc., Boca Raton, Florida, 2003~2004, p. 6-190.
104.N. R. Demarquette, F. T. Da Silva, S. D. Brandi, and D. Gouva, “Surface Tension of Polyethylene Used in Thermal Coating”, Polym. Eng. Sci., 2000, Vol. 40, pp. 1663-1671.
105.C.-S. Chen, “Rheological Behavior of Low/High Density Polyethylene Melt Flowing Through Micro-channels”, e-Polym., 2008, No. 039, pp. 1-14.
106.J. H. Song, J. R. G. Evans, M. J. Edirisinghe, and E. H. Twizell, “Optimization of Heating Schedules in Pyrolytic Binder Removal from Ceramic Moldings”, J. Mater. Res., Vol. 15, pp. 449-457.
107.F. Bordet, T. Chartier, and J. F. Baumard, “The Use of Co-solvents in Supercritical Debinding of Ceramics”, J. Eur. Ceram. Soc., 2002, Vol. 22, pp. 1067-1072.
108.R. Zallen, “The Physics of Amorphous Solids”, John Wiley & Sons, Inc., New York, NY, 1983, pp. 183-202.
109.D. P. Bentz and E. J. Garboczi, “Percolation of Phases in a Three-Dimensional Cement Paste Microstructural Model”, Cem. Conc. Res., 1991, Vol. 21, pp. 325-344.
110.H. Scher and R. Zallen, “Critical Density in Percolation Processes”, J. Chem. Phys., 1970, Vol. 53, pp. 3759-3761.
111.P. J. S. Ewen and J. M. Robertson, “A Percolation Model of Conduction in Segregated Systems of Metallic and insulating Materials: Application to Thick Film Resistors”, J. Phys. D: Appl. Phys., 1981, Vol. 14, pp. 2253-2268.
112.A. Malliaris and D. T. Turner, “Influence of Particle Size on the Electrical Resistivity of Compact Mixtures of Polymeric and Metallic Powders”, J. Appl. Phys., 1971, Vol. 42, pp.614-618.
113.I. C. Neves, G. Botelho, A. V. Machado, P. Rebelo, S. Ramôa, M. F. R. Pereira, A. Ramanathan, and P. Pesarmona, “Feedstock recycling of Polyethylene over AITUD-1 Mesoporous Catalyst”, Polym. Degrd. Stab., 2007, Vol. 92, pp. 1513-1519.
114.Y. C. Lu and K. S. Hwang, “Improved Densification of Carbonyl Iron Compacts by the Addition of Fine Alumina Powders”, Metall. Mater. Trans. A, 2000, Vol. 31A, pp. 1645-1652.
115.S. G. Li, G. Fu, I. Reading, S. B. Tor, N. H. Loh, D. Chaturvedi, S. F. Yoon, and K. Youcef-Toumi, “Dimensional Variation in Production of High-aspect-ratio Micro-pillars Array by Micro Powder Injection Molding”, Appl. Phys. A: Mater. Sci, and Proc., 2007, Vol. 89, pp. 721-728.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26923-
dc.description.abstract金屬射出成形製程具有極佳的成形能力,適用於製作具有複雜形狀的小零件,但在脫脂過程中,製程參數不當的控制常常會使得試片尺寸穩定性差,甚至產生裂縫、魚鱗紋、發泡等缺陷,導致成本之增加甚至造成成品機械性質的降低。由於這些缺陷的產生大部分來自於脫脂製程,因此本研究的目的在於瞭解缺陷產生之原因及如何有效地予以改善。
本論文第一部份探討溶劑脫脂時降低試片膨脹量的方法。由雷射膨脹儀的結果可以知道,降低試片膨脹量可藉由減少黏結劑含量、於射料中加入偶合劑、於溶劑中添加膨脹抑制劑以及降低脫脂溫度來達到,若考慮改變製程參數的困難度以及脫脂的效率時,則以在射料中添加偶合劑或是在溶劑中加入10 vol%的膨脹抑制劑為較有效率的方法。
第二部分探討溶劑脫脂時,試片內連通孔形成現象。利用Fick擴散理論計算在不同溶劑脫脂時間下,試片內可溶性黏結劑的分佈情形,再利用銑床和索氏萃取器來準確得知試片內可溶性黏結劑的實際分佈,結果發現這些分佈數據與擴散理論所預測的數值相符合。實驗中亦利用氣泡測試和螢光顯微鏡觀察心部何時形成連通孔,結果發現對於8.7、6.0及3.0mm厚的方塊試片,心部產生連通孔所需的最低溶劑脫脂率均約為62.0%,心部的孔道所佔的比例為9.2 vol%,與一般燒結過程中連通孔轉變為封閉孔所需達到的孔隙率(8 vol%)相近。
第三部份探討熱脫脂時,溶劑脫脂率對於後續熱脫脂時缺陷產生的影響。實驗結果發現溶劑脫脂時所形成的連通孔道,在加熱過程中,會由於毛細力作用,而使得熔融的可溶性黏結劑(石蠟及硬脂酸)及骨架黏結劑(聚乙烯)在試片內發生重分配的現象,造成溶劑脫脂後所形成的連通孔道再度被封閉。由於熱裂解時所產生的氣體分子無法快速逸出至胚體外,使得較厚的試片(>4.0 mm),即使其溶劑脫脂後具有連通孔,試片仍無法以較快的升溫速率(5℃/min)進行熱脫脂。最後藉由調整溶劑脫脂率及熱脫脂時的升溫速率,可找到對於不同厚度試片的安全脫脂條件。
zh_TW
dc.description.abstractUnsatisfactory dimensional control and defects are frequently seen in metal injection molded (MIM) parts, particularly after solvent debinding and thermal debinding. Most of these problems are related to the high amount of swelling of the binder components during solvent debinding and the cracking or blistering during the subsequent thermal debinding. The objective of this study was thus to eliminate the defect formation in metal injection molded parts during solvent and thermal debinding.
In the first part of this work, the laser dilatometer analyses indicate that the amount of swelling during solvent debinding could be reduced by decreasing the binder content, adding coupling agent into the feedstock, adding swelling inhibitor into the solvent, and lowering the debinding temperature. Considering the productivity and the ease of implementation, adding coupling agents and swelling inhibitors are the two most effective methods.
In the second part, a diffusion model was established to predict the binder distribution in the compact and the minimum amount of binder removal that is needed to create interconnected pore channels in the middle of the MIM specimen. The model agreed with the experimental data that were obtained using the soxhlet extraction method. The distributions of pore channels were also examined using bubble and dye penetration tests. The results show that when 62.0% of the soluble binder is removed, interconnected pores are formed in the middle of the 8.7, 6.0, and 3.0mm thick specimens. The total amount of pore in the core region equals to about 9.2%, which is close to the criterion when a sintered compact enters the final stage sintering and starts to close off the cylindrical pore channels.
In the third part, the connected pores, which are formed after solvent debinding, are closed again due to the redistribution of soluble binders and backbone binders in the heating process. When decomposed gas molecules cannot escape easily to the ambient through the interconnected pores during thermal debinding, the pressure builds up at the core section and then causes cracking. Therefore, although the thicker specimen (>4.0 mm thickness) has higher than the minimum amount of binder removal, it can’t use normal heating rate (5℃/min) to do following thermal debinding process. Finally, the safe conditions of the two-stage debinding process for specimens with different thickness are determined by adjusting the solvent debinding completion and the heating rate of thermal debinding.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:32:35Z (GMT). No. of bitstreams: 1
ntu-97-F89542019-1.pdf: 6940458 bytes, checksum: d09227e76c7c24da72b82fc91159c5b0 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要.................................................. Ⅰ
Abstract.............................................. Ⅲ
目錄.................................................. Ⅴ
表目錄................................................ Ⅹ
圖目錄................................................ ⅩⅠ
第一章 文獻回顧........................................1
1-1 混煉階段...........................................1
1-1-1黏結劑的選擇......................................1
1-1-2 粉末的選擇.......................................2
1-2 成形階段...........................................3
1-2-1 收縮孔...........................................3
1-2-2 裂紋.............................................4
1-2-3 脫模缺陷.........................................4
1-3 脫脂階段...........................................4
1-3-1 溶劑脫脂........................................ 5
1-3-1-1 溶劑脫脂機制...................................5
1-3-1-2 溶劑脫脂速率之數學模型.........................6
1-3-1-3 溶劑脫脂過程所產生的缺陷.......................9
1-3-1-3 溶劑脫脂的優缺點...............................11
1-3-2 熱脫脂.......................................... 12
1-3-2-1 熱脫脂速率之數學模型...........................12
1-3-2-2 熱脫脂過程所產生的缺陷........................ 12
1-3-2-2 熱脫脂的優缺點.................................14
1-4 研究動機 ..........................................15
第二章 實驗步驟........................................19
2-2 射料 ..............................................19
2-2-1 金屬粉末.........................................19
2-2-2 黏結劑系統.......................................20
2-3 混煉...............................................23
2-4 射出成形...........................................23
2-5 脫脂...............................................24
2-5-1 溶劑脫脂.........................................25
2-5-2 膨脹抑制劑.......................................26
2-5-3 熱脫脂.......................................... 26
2-6 燒結...............................................27
2-7 生胚抗彎強度量測 ..................................28
2-8 生胚衝擊強度量測 ..................................28
2-9 雷射膨脹儀 ........................................29
2-10 方塊試片中各層樣品溶脫率的量測....................30
2-10-1 銑床............................................30
2-10-2 索氏萃取........................................31
2-10-3 連通孔測試......................................33
2-10-3-1 氣泡測試......................................33
2-10-3-2 螢光顯微鏡觀察連通孔的形成....................34
2-10-3-3 水銀測孔儀................................... 34
2-11 原位溶脫率量測....................................35
2-12 測試儀器..........................................36
第三章 結果與討論 .....................................37
3-1 雷射膨脹儀的校正...................................37
3-2 試片膨脹量與缺陷的關係.............................38
3-2-1 試片膨脹的來源...................................38
3-2-2 試片膨脹所產生的缺陷.............................39
3-3 降低溶劑脫脂時試片的膨脹...........................42
3-3-1 黏結劑的影響.....................................42
3-3-1-1 黏結劑的含量...................................42
3-3-1-2 骨架黏結劑(PE)的含量...........................45
3-3-1-3 不同的骨架黏結劑及填充劑.......................46
3-3-2 粉末特性的影響...................................49
3-3-3 金屬基偶合劑添加的影響...........................50
3-3-3-1 生胚性質.......................................50
3-3-3-2 試片膨脹行為...................................52
3-3-3-3 溶劑脫脂後試片破斷面分析.......................52
3-3-4 溶劑的選擇.......................................54
3-3-4-1 不同脫脂溶液的比較.............................56
3-3-4-2 膨脹抑制劑添加的影響...........................58
3-3-4-2-1 溶解度參數.................................. 58
3-3-4-2-2 聚乙烯平版試片在溶劑中的膨脹................ 60
3-3-4-2-3 利用醇類來當作膨脹抑制劑.................... 60
3-3-4-2-4 加入正溴丙烷和乙酸乙酯來當作膨脹抑制劑...... 63
3-4 溶劑脫脂數學模型和內部可溶性黏結劑分佈之關係.......66
3-4-1 溶劑脫脂模型.................................... 66
3-4-1-1 溫度效應.......................................67
3-4-1-2 時間效應.......................................67
3-4-2 溶劑脫脂後試片內可溶性黏結劑的分佈...............70
3-4-2-1 可溶性黏結劑分佈理論值求法.....................70
3-4-2-2 8.7、6.0及3.0mm試片內可溶性黏結劑的分佈........73
3-4-2-3 利用熱差分析儀分析可溶性黏結劑的含量...........77
3-5 溶劑脫脂過程中連通孔形成所需的最低溶劑脫脂率.......82
3-5-1 氣泡測試法...................................... 83
3-5-2 螢光測試法.......................................84
3-5-3 利用SEM觀察不同溶劑脫脂率試片的破斷面............86
3-5-4 達到最低溶劑脫脂率時的孔隙率.....................87
3-6 熱脫脂時缺陷形成與內部孔道分佈之關係...............89
3-6-1 溶劑脫脂率與熱脫脂缺陷之關係.....................92
3-6-2 熱脫脂過程中黏結劑的重分配現象...................97
3-6-2-1 利用螢光劑滲透法觀察加熱後試片內連通孔的變化.. 98
3-6-2-2 利用SEM觀察加熱後試片內連通孔的變化...........100
3-6-2-3 利用水銀測孔儀觀察加熱後試片內連通孔的變化....102
3-6-2-4 加熱過程中黏結劑產生重分配的原因..............105
3-6-3 對於不同厚度試片的安全脫脂參數..................107
第四章 綜合討論.......................................110
4-1 溶劑脫脂時試片的膨脹曲線..........................110
4-1-1 第一階段(瞬間的熱膨脹,0~1.8 ks,膨脹量為0→0.29%)................................................110
4-1-2 第二階段(試片的緩慢膨脹,1.8~7.5 ks,膨脹量為0.29→
0.37%)................................................111
4-1-3 第三階段(試片的快速膨脹,7.5~13 ks,膨脹量為0.37→
0.84%)................................................111
4-1-4 第四階段(連通孔的生成,13~44.6 ks,膨脹量為0.84→
0.45%)................................................115
4-1-5 第五階段(試片的膨脹達到平衡,>44.6 ks,膨脹量為0.45%)................................................119
4-2 膨脹抑制劑的影響..................................120
4-2-1 MIM試片的溶解度參數.............................120
4-2-2 膨脹抑制劑的機制................................121
4-2-3 膨脹抑制劑對減少缺陷產生的效果..................123
4-3 降低膨脹量方法的比較..............................125
4-4 連通孔形成時所需的最低溶劑脫脂率..................127
4-5熱脫脂過程中連通孔道不被再次封閉所需的溶劑脫脂率...129
第五章 結論 ..........................................132
第六章 建議...........................................134
參考文獻..............................................136
dc.language.isozh-TW
dc.title金屬射出成形脫脂製程中缺陷產生的原因及其解決方法zh_TW
dc.titleThe Causes of Defects during MIM Debinding Process and Methods of Improvementen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡大翔,許貫中,廖文彬,韋文誠
dc.subject.keyword金屬粉末射出成形,溶劑脫脂模型,熱脫脂,缺陷,連通孔,zh_TW
dc.subject.keywordmetal injection molding,solvent debinding modeling,defects,interconnected pores,en
dc.relation.page147
dc.rights.note未授權
dc.date.accepted2008-06-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
6.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved