請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26828
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王俊能 | |
dc.contributor.author | Shao-Pei Chou | en |
dc.contributor.author | 周韶霈 | zh_TW |
dc.date.accessioned | 2021-06-08T07:27:42Z | - |
dc.date.copyright | 2008-07-21 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-09 | |
dc.identifier.citation | Almeida, J., M. Rocheta, and L. Galego. 1997. Genetic control of flower shape in Antirrhinum majus. Development 124:1387.
Baumann, K., M. Perez-Rodriguez, D. Bradley, J. Venail, P. Bailey, H. Jin, R. Koes, K. Roberts, and C. Martin. 2007. Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134:1691-1701. Bradshaw, H. D., Jr., K. G. Otto, B. E. Frewen, J. K. McKay, and D. W. Schemske. 1998. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149:367-382. Bradshaw, H. D., S. M. Wilbert, K. G. Otto, and D. W. Schemske. 1995. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376:762-765. Brantjes, N. B. M. 1982. Pollen placement and reproductive isolation between two brazilian Polygala species (Polygalaceae). Plant Syst. Evol. 141:41-52. Calendini, F., and J. F. Martin. 2005. PaupUP v1. 0.2032. 22590 Beta. A free graphical frontend for Paup* Dos software. Program distributed by the authors. Carpenter, R., and E. S. Coen. 1990. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 4:1483. Chen, K.-Y., and S. D. Tanksley. 2004. High-resolution mapping and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563-1573. Chen, K. Y., B. Cong, R. Wing, J. Vrebalov, and S. D. Tanksley. 2007. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643. Chen, W. H., M. Möller, Y. M. Shui, and M. D. Zhang. 2008. A new species of Paraboea (Gesneriaceae) from a karst cave in Guangxi, China, and observations on variations in flower and inflorescence architecture. Bot. J. Lin. Soc. In print. Citerne, H. L., D. Luo, R. T. Pennington, E. Coen, and Q. C. B. Cronk. 2003. A phylogenomic investigation of CYCLOIDEA-Like TCP genes in the Leguminosae. Plant Physiol. 131:1042-1053. Citerne, H. L., M. Möller, and Q. C. B. Cronk. 2000. Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry. Ann. Bot. 86:167-176. Corley, S. B., R. Carpenter, L. Copsey, and E. Coen. 2005. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc. Natl. Acad. Sci. USA 102:5068-5073. Costa, M. M. R., S. Fox, A. I. Hanna, C. Baxter, and E. Coen. 2005. Evolution of regulatory interactions controlling floral asymmetry. Development 132:5093-5101. Crawford, B. C. W., U. Nath, R. Carpenter, and E. S. Coen. 2004. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol. 135:244-253. Cronk, Q., and M. Möller. 1997. Genetics of floral symmetry revealed. Trends Ecol. & Evol. 12:85-86. Cubas, P., N. Lauter, J. Doebley, and E. Coen. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18:215. Darwin, C. 1862. On the various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing. J. Murray, London. Davenport, D., and H. Lee. 1985. Image analysis in the Orchidaceae. J. Theor. Biol. 114:199-222. DeWitt Smith, S., C. Ane, and D. A. Baum. 2008. The role of pollinator shifts in the floral diversification of Iochroma (Solanaceae). Evolution 62:793-806. Dodd, M. E., J. Silvertown, and M. W. Chase. 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–739. Doebley, J., A. Stec, and C. Gustus. 1995. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333-346. Doebley, J., A. Stec, and L. Hubbard. 1997. The evolution of apical dominance in maize. Nature 386:485-488. Donoghue, M. J., R. H. Ree, and D. A. Baum. 1998. Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Sci. 3:311-317. Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. . Phytochem. Bull. 19:11-15. Ehrenreich, I. M., and M. D. Purugganan. 2006. The molecular genetic basis of plant adaptation. Am. J. Bot. 93:953-962. Faegri, K., and L. van der Pijl. 1966. The Principles of Pollination Ecology. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. Fisher, R. A. 1930. The genetical theory of natural selection. Clarendon. Oxford. Freeman, S., and J. C. Herron. 2004. Evolutionary analysis. 3rd edition. Upper Saddle River:294-302. Fukuda, T., J. Yokoyama, and M. Maki. 2003. Molecular evolution of cycloidea-like genes in Fabaceae. J. Mol. Evol. 57:588-597. Galego, L., and J. Almeida. 2002. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev. 16:880-891. Galliot, C., M. E. Hoballah, C. Kuhlemeier, and J. Stuurman. 2006a. Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta 225:203-212. Galliot, C., J. Stuurman, and C. Kuhlemeier. 2006b. The genetic dissection of floral pollination syndromes. Curr. Opin. Plant Biol. 9:78-82. Glover, B. J., M. Perez-Rodriguez, and C. Martin. 1998. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125:3497-3508. Goldblatt, P., and J. C. Manning. 2006. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa. Ann. Bot. 97:317-344. Goldblatt, P., J. C. Manning, and P. Bernhardt. 2000. Adaptive radiation of pollination mechanisms in Sparaxis (Iridaceae: Ixioideae). Adansonia 22:57-70. Grant, V. 1994. Modes and origins of mechanical and ethological isolation in angiosperms. Proc. Natl. Acad. Sci. USA 91:3-10. Grant, V., and K. A. Grant. 1965. Flower pollination in the phlox family. Columbia University Press, New York. Gubitz, T., A. Caldwell, and A. Hudson. 2003. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives. Mol. Biol. Evol. 20:1537-1544. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95–98. Harrison, C. J., M. Möller, and Q. C. B. Cronk. 1999. Evolution and development of floral diversity in Streptocarpus and Saintpaulia. Ann. bot. 84:49-60. Hiesey, W. M., M. A. Nobs, and O. Bjorkman. 1971. Experimental studies on the nature of species. V. Biosystematics, genetics, and physiological ecology of the Erythranthe section of Mimulus. Carnegie Inst. of Washington Publ. 628:1-213. Hileman, L. C., and D. A. Baum. 2003. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Mol. Biol. Evol. 20:591-600. Hileman, L. C., E. M. Kramer, and D. A. Baum. 2003. Differential regulation of symmetry genes and the evolution of floral morphologies. Proc. Natl. Acad. Sci. USA 100:12814-12819. Hilliard, O. M., and B. L. Burtt. 1971. Streptocarpus: an African plant study. University of Natal Press, Pietermaritzburg. Howarth, D. G., and M. J. Donoghue. 2006. Phylogenetic analysis of the 'ECE' (CYC/TB1) clade reveals duplications predating the core eudicots. Proc. Natl. Acad. Sci. USA 103:9101-9106. Jaffe, F. W., A. Tattersall, and B. J. Glover. 2007. A truncated MYB transcription factor from Antirrhinum majus regulates epidermal cell outgrowth. J. Exp. Bot. 58:1515-1524. Johnson, S. D., H. P. Linder, and K. E. Steiner. 1998. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am. J. Bot. 85:402-411. Kay, Q. 1988. More than the eye can see: the unexpected complexity of petal structure. Plants Today (July-August issue):109–114. Kay, Q. O. N., H. S. Daoud, and C. H. Stirton. 1981. Pigment distribution, light-reflection and cell structure in petals. Bot. J. Linn. Soc. 83:57-83. Kosugi, S., and Y. Ohashi. 1997. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607-1619. Lawrence, W. J. C. 1940. The genus Streptocarpus. J. R. Hortic. Soc. 65:17-22. Leppik, E. E. 1974. Origin and evolution of bilateral symmetry in flowers. Plant Introduction Investigation Paper-US Agricultural Research Service (USA) 26:49-85. Liu, Y. G., N. Mitsukawa, T. Oosumi, and R. F. Whittier. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8:457-463. Liu, Y. G., and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674-681. Luo, D., R. Carpenter, L. Copsey, C. Vincent, J. Clark, and E. Coen. 1999. Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367-376. Luo, D., R. Carpenter, C. Vincent, L. Copsey, and E. Coen. 1996. Origin of floral asymmetry in Antirrhinum. Nature 383:794-799. Möller, M., and Q. C. B. Cronk. 2001. Phylogenetic studies in Streptocarpus (Gesneriaceae): reconstruction of biogeographic history and distribution patterns. Systematics and Geography of Plants 71:545-555. Manly, K. F., J. R. H. Cudmore, and J. M. Meer. 2001. Map Manager QTX, cross-platform software for genetic mapping. Mamm. Genome. 12:930-932. Nath, U., B. C. W. Crawford, R. Carpenter, and E. Coen. 2003. Genetic control of surface curvature. Science 299:1404-1407. Neal, P. R., A. Dafni, and M. Giurfa. 1998. Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annu. Rev. Ecol. System. 29:345. Noda, K.-i., B. J. Glover, P. Linstead, and C. Martin. 1994. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369:661-664. Ori, N., A. R. Cohen, A. Etzioni, A. Brand, O. Yanai, S. Shleizer, N. Menda, Z. Amsellem, I. Efroni, I. Pekker, J. P. Alvarez, E. Blum, D. Zamir, and Y. Eshed. 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 39:787-791. Ostler, W. K., and K. T. Harper. 1978. Floral ecology in relation to plant species diversity in the Wasatch Mountains of Utah and Idaho. Ecology 59:848-861. Perez-Rodriguez, M., F. W. Jaffe, E. Butelli, B. J. Glover, and C. Martin. 2005. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132:359-370. Potgieter, C. J., and T. J. Edwards. 2005. The Stenobasipteron wiedemanni (Diptera: Nemestrinidae) pollination guild in eastern South Africa. Ann. Mo. Bot. Gard. 92:254-267. Ree, R. H., H. L. Citerne, M. Lavin, and Q. C. B. Cronk. 2004. Heterogeneous selection on LEGCYC paralogs in relation to flower morphology and the phylogeny of Lupinus (Leguminosae). Mol. Biol. Evol. 21:321-331. Reeves, P. A., and R. G. Olmstead. 2003. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution. Mol. Biol. Evol. 20:1997-2009. Rudall, P. J., and R. M. Bateman. 2003. Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci. 8:76-82. Sargent, R. D. 2004. Floral symmetry affects speciation rates in angiosperms. Proc. Biol. Sci. 271:603-608. Smith, J. F., L. C. Hileman, M. P. Powell, and D. A. Baum. 2004. Evolution of GCYC, a Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae (Gesneriaceae). Mol. Phylogenet. Evol. 31:765-779. Stebbins, G. L. 1970. Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Ann. Rev. Ecolog. Syst. 1:307-326. Stebbins, G. L. 1974. Flowering plants: evolution above the species level. Harvard Univ. Press, Cambridge, MA. Stracke, R., M. Werber, and B. Weisshaar. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4:447-456. Stubbe, H. 1966. Genetik und Zytologie von Antirrhinum L. sect Antirrhinum VEB Gustav Fischer Verlag, Jena. Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (* and other methods). 4.0 b10 ed. Sunderland, Massachusetts. Sinauer Associates, Inc. Tanksley, S. D. 1993. Mapping Polygenes. Annu. Rev. Genet. 27:205-233. Thompson, J. D., D. G. Higgins, and GibsonTJ. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680. Vincze, T., J. Posfai, R. J. Roberts, and O. Journals. 2003. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res. 31:3688-3691. Zhou, X.-R., Y.-Z. Wang, J. F. Smith, and R. Chen. 2008. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytol. 178:532-543. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26828 | - |
dc.description.abstract | The great diversity of floral shape arouses the natural curiosity to explore the underlying genetic control. Floral zygomorphy as a key innovation to promote plant-pollinator specialization has been proposed to facilitate floral shape diversification. CYCLOIDEA (CYC), RADIALIS (RAD), and DIVARICATA (DIV) have been identified to establish floral zygomorphy. With the ability of regulating cell division and cell growth differentially along the dorsoventral axis, these zygomorphy genes are proposed to be involved in the establishment of different pollination syndromes. In addition, MIXTA-LIKE (MYBML) genes, which are identified to act on the floral architecture via controlling cell shape, are also proposed to be involved in this process. However, no genetic analysis on the phenotypic effects of these genes on floral shape variation related to different pollination syndromes has ever been carried out. Species of the genus Streptocarpus (Cape Primrose, Gesneriaceae) exhibit flowers with pollination syndromes ranging from butterfly flowers with keyhole type corollas, fly flowers with open tube corollas to bird flowers with narrow tubular red corollas. The open tube flowered S. rexii and the keyhole flowered S. johannis were crossed to produced F1 and 119 F2 plants. Association analysis among 119 F2 individuals revealed that StrRAD1 had phenotypic effects on the overall corolla tube length and total stamen length, whereas StrDIV2 affected the diameter of the undilated part of the corolla tube(, an important trait likely correlated with the proboscis length of potential pollinators). In addition, StrCYC1A and StrMYBML2 formed a strong linkage group, and significantly influenced the diameter of the tube opening and the dilated part of the corolla tube, the key characters that define the size of the ‘insect visiting chamber’, and hence effective pollinator. Both traits are critical for the establishment of different pollination syndromes in Streptocarpus. This finding, the first reported genetic link between zygomorphy genes and the differentiation of pollination syndromes, implied that the zygomorphy genes not only act on the establishment of zygomorphy but also on the evolution of floral diversification. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:27:42Z (GMT). No. of bitstreams: 1 ntu-97-R94B41020-1.pdf: 1319350 bytes, checksum: b26685d13dc9c8f8784ff786a2c6994c (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 謝辭 I
摘要 II Abstract III Table of Contents V List of Figures VIII List of Tables X 1. Introduction 1 1.1. Floral diversity and pollination syndromes 1 1.2. The genetic basis of pollination syndromes 3 1.3. What are the candidate genes? 8 1.3.1. Floral zygomorphy and floral shape diversity 8 1.3.2. The molecular developmental genetics of zygomorphy 9 1.3.2.1. CYCLOIDEA and DICHOTOMA 11 1.3.2.2. DIVARICATA 16 1.3.2.3. RADIALIS 19 1.3.3. Floral zygomorphy in Gesneriaceae 20 1.3.4. Other Candidate genes 21 1.3.4.1. MIXTA-LIKE genes 21 1.4. Streptocarpus 24 1.5. Aim of this study 27 2. Materials and Methods 28 2.1. Plant materials 28 2.2. Morphological study 29 2.2.1. Floral traits measurement 29 2.3. Molecular techniques 31 2.3.1. Nucleic acid extraction 31 2.3.1.1. DNA extraction 31 2.3.1.2. RNA extraction 32 2.3.2. First strand cDNA synthesis 33 2.3.3. Polymerase chain reaction 34 2.3.3.1. Standard PCR 34 2.3.3.2. Thermal Asymmetric InterLaced PCR (TAIL-PCR) 35 2.3.4. Gel electrophoresis 38 2.3.5. Purification of PCR product 39 2.3.6. Cloning 39 2.3.7. Cleaved Amplified fragments Polymorphisms (CAPS) 40 2.4. Phylogenetic analyses 42 2.5. Data analyses 44 3. Results 45 3.1. Result Overview 45 3.2. Genotype results 46 3.2.1. Genotype results of CYCLOIDEA 46 3.2.1.1. Isolation of CYC like genes 46 3.2.1.2. Identity of isolated CYC like genes 47 3.2.1.3. Screen for segregation of CYC1A alleles 50 3.2.1.4. Screen for segregation of CYC1B alleles 53 3.2.2. Genotype results of RADIALIS 58 3.2.2.1. Isolation of RAD like genes 58 3.2.2.2. Identity of isolated RAD like genes 61 3.2.2.3. Screen for segregation of RAD1 alleles 64 3.2.2.4. Screen for segregation of RAD2 alleles 67 3.2.3. Genotype results of DIVARICATA 70 3.2.3.1. Isolation of DIV like genes 70 3.2.3.2. Identity of isolated DIV like genes 71 3.2.3.3. Screen for segregation of DIV1 alleles 74 3.2.3.4. Screen for segregation of DIV2 alleles 76 3.2.4. Genotype results of MYBML (MYB MIXTA LIKE) 79 3.2.4.1. Isolation of MYBML genes 79 3.2.4.2. Identity of isolated MYBML genes 81 3.2.4.3. Screen for segregation of MYBML2 alleles 84 3.3. Data analyses 86 3.3.1. Morphological data analyses 86 3.3.1.1. Correlations between pairs of floral traits 86 3.3.1.2. Cluster analysis of floral traits 88 3.3.2. Genotype data analyses 89 3.3.2.1. Most genes but CYC1A and MYBML2 follow Mendelism 89 3.3.2.2. Two linkage groups were found. 91 3.3.2.3. Associations between floral trait and gene locus 91 4. Discussion 94 4.1. Homologs of CYC, RAD, DIV, and MYBML2 are involved in the phenotypic variation of pollination-related floral traits 94 4.2. CYC1A/MYBML2 linkage group controlled the diameter of the insect chamber 95 4.3. To separate the individual effects of CYC1A and MYBML2 needs further study 96 4.4. CYC/MYBML2 linkage group is also found in Antirrhinum 96 4.5. Zygomorphy genes not only promote floral diversification through the establishment of zygomorphy but also through their effects on the pollination syndrome differentiation 97 Reference 99 Appendices 105 Appendix 1 Sequences obtained in this study 105 Appendix 1.1 CYC sequences 105 Appendix 1.2 RAD sequences 111 Appendix 1.3 DIV sequence 117 Appendix 1.4 MYBML sequence 122 Appendix 2 GenBank accession numbers of sequences used in phylogenetic analysis and tree statistics for phylogenies 127 Appendix 3 Genotypes for F2 plants 130 Appendix 4 Morphological data from F2 plants 135 | |
dc.language.iso | en | |
dc.title | Streptocarpus屬(苦苣苔科)傳粉相關花部形態的遺傳分析 | zh_TW |
dc.title | Genetic analysis of pollination-related floral shape in Streptocarpus (Gesneriaceae) | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡哲明,陳虹樺,陳凱儀,楊長賢 | |
dc.subject.keyword | 傳粉,花部形態,兩側對稱,Streptocarpus,CYCLOIDEA,RADIALIS,DIVARICATA,MIXTA, | zh_TW |
dc.subject.keyword | Pollination,floral shape,Streptocarpus,Zygomorphy,CYCLOIDEA,RADIALIS,DIVARICATA,MIXTA, | en |
dc.relation.page | 144 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-07-10 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。