請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26520完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韋文誠 | |
| dc.contributor.author | Yi-Ju Chen | en |
| dc.contributor.author | 陳怡如 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:13:30Z | - |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | [1] B. C. H. Steele and A. Heinzel, 'Materials for Fuel-Cell Technologies,' Nature, 414 [15] 345-352 (2001)
[2] Website, Tech-On, http://techon.nikkeibp.co.jp/article/HONSHI/20070215/127781/) [3] Website, Wiki, 'Fuel Cell' (http://en.wikipedia.org/wiki/Fuel_cell) [4] W. C. J. Wei, “Sealing Glass-Ceramics for Solid Oxide Fuel Cell,” recent Patens on Materials Science (submitted) [5] 'SECA Core Technology Program Seal Workshop Summary Report,' in Proceedings of the SECA Core Technology Program Seal Workshop. Edited by A. Manivannan and P. Singh. Hyatt Regency, San Antonio (2007) [6] J. W. Fergus, 'Sealants for Solid Oxide Fuel Cells,' Journal of Power Sources, 147, 46-57 (2005) [7] K. S. Weil, C. A. Coyle, J. S. Hardy, J. Y. Kim, and G. G. Xia, 'Alternative planar SOFC sealing concepts,' Fuel Cells Bulletin, 5, 11-16 (2004). [8] G. S. K. Eichler, P. Otschik, and W. Schaffrath, 'BAS (BaO•Al2O3•SiO2)-Glasses for High Temperature Applications ' Journal of the European Ceramic Society 19 [6-7] 1101-1104 (1999) [9] R. N. Singh 'Innovative Seals for Solid Oxide Fuel Cells (SOFC)-Soft Seals,' SECA (2006) ( http://www.netl.doe.gov ) [10] Y. M. Chiang, D. Birnie III, and W. D. Kingery, Physical Ceramics, Chapters 2 &3, John Wiley & Sons, Inc. (1997) [11] ASTM definition of glass from 1945 [12] Schott, 'Glass Made of Ideas,' Electronic Packaging, SCHOTT North America, Inc. (2000) [13] D. R. Uhlmann, 'A Kinetic Treatment of Glass Formation,' Journal of Non-Crystalline Solids 7[4] 337-348 (1972) [14] N. P. Bansal, R. H. Doremus, A. J. Bruce, and C. T Moynihan 'Kinetics of Crystallization of ZrF4-Ba2-LaF3 Glass by Differential Scanning Calorimetry,' Journal of the American Ceramic Society, 55, 223 (1983) [15] A. Hagen, R. Barfod, P. V. Hendriksen, Y. L. Liu, and S. Ramousse, 'Degradation of Anode Supported SOFCs as a Function of Temperature and Current Load,' Journal of the Electrochemical Society, 153 [16] 1165-1171 (2006) [16] A. Fluegel, 'Sealing Glass-Ceramics for Planar Solid Oxide Fuel Cells.”In Statistical Calculation and Development of Glass Properties” (2005) (http://glassproperties.com/) [17] R. K. Brow, 'Phase Separation in Borosilicate and Alkali Earth Silicate Glasses.' Online Glass Course, Edited by A. Fluegel (2005) (http://glassproperties.com/) [18] V. A. C. Haanappel, V. Shemet, I. C. Vinke, and W. J. Quadakkers, 'A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,' Journal of Power Sources, 141, 102-107 (2005) [19] K. D. Meinhardt, J. D. Vienna, T. R. Armstrong, and L. R. Pederson, 'Glass-Ceramic Joint and Method of Joining,' U.S. Patent 6532769 (2003) [20] S. Ghosh, P. Kundu, A. D. Sharma, R. N. Basu, and H. S. Maiti, 'Microstructure and Property Evaluation of Barium Aluminosilicate Glass-Ceramic Sealant for Anode- Supported Solid Oxide Fuel Cell ' Journal of the European Ceramic Society, 28, 69-76 (2008) [21] S. B. Sohn, S. Y. Choi, G. H. Kim, H. S. Song and G. D. Kim, 'Stable Sealing Glass for Planar Solid Oxide Fuel Cell,' Journal of Non-Crystalline Solids, 297 [2-3] 103-112 (2002) [22] M. J. Pascual, A. Guillet, and A. Durán, 'Optimization of Glass–Ceramic Sealant Compositions in the System MgO–BaO–SiO2 for Solid Oxide Fuel Cells (SOFC),' Journal of Power Sources, 169 [1] 40-46 (2007) [23] M. Avrami, 'Kinetics of Phase Change: I. General Theory,' The Journal of Chemical Physics, 7 [12] 1103-1102 (1939) [24] M. Avrami, 'Kinetics of Phase Change: II. Transformation-Time Relations for Random Distribution of Nuclei,' The Journal of Chemical Physics, 8 [2] 212-214 (1940) [25] M. Avrami, 'Kinetics of Phase Change: III. Granulation, Phase Change, and Microstructure,' The Journal of Chemical Physics, 9 [2] 177-184 (1941) [26] M. A. Abdel- Rahim, M. M. Ibrahim, M. Dongol, and A. Gaber, 'Differential Scanning Calorimetric Study of Bi10Se80In10 Chalcogenide Glass,' Journal of Materials Science, 27 [17] 4685-4689 (1992) [27] N. P. Bansal and R. H. Doremus, 'Determination of Reaction Kinetic Parameters from VariableTemperature DSC or DTA,' Journal of Thermal Analysis and Calorimetry, 29, 115 (1984) [28] N. Afify, 'Kinetics Study of Non-Isothermal Crystallization in Se0.7Te0.3 Chalcogenide Glass,' Journal of Non-Crystalline Solids, 136, 67-75 (1991) [29] N. Afify, 'A New Method to Study the Crystallization or Chemical Reaction Kinetics using Thermal Analysis Technique,' Journal of Physics and Chemistry of Solids, 69 [7] 1691-1697 (2008) [30] G. O. Piloyan, I. D. Ryabchikov, and O. S. Novikova, 'Determination of Activation Energies of Chemical Reactions by Differential Thermal Analysis' Nature, 212, 1229-1229 (1996) [31] N. P. Bansal and E. A. Gamble, 'Crystallization Kinetics of a Solid Oxide Fuel Cell Seal Glass by Differential Thermal Analysis,' Journal of Power Sources, 147, 107-115 (2005) [33] S. K. Barfod, Y. L. Liu, P. H. Larsen, and P. V.Hendriksen, 'Long-term tests of DK-SOFC cells,' In Proceedings of the International Symposium on Solid Oxide Fuel Cells VIII, 2003-07 Edited by S. C. S. a. M. Dokiya, Paris, France 1158 (2003) [34] W. Kauzman, 'The nature of the glassy state and the behavior of liquids at low temperatures', Chemical Reviews 43, 219–256 (1948) [35] D. Turnbull, 'Under What Conditions can a Glass be Formed?' Contemporary Physics, 10 [5] 473-488 (1969) [36] M. Ouchetto, B. Elouadi, and S. Parke, 'Infrared investigation of chemical durability of Lanthanum-Zinc ultraphosphate glasses', Physical Chemistry Glasses, 32 [2] 43-47 (1991) [37] A. Hrubÿ, 'Evaluation of Glass-Forming Tendency by Means of DTA,' Czechoslovak Journal of Physics, 22, 1187-1193 (1972) [38] M. Lasocka, 'Normalized Value of Kgl Parameter of Glass Formation Ability,' Journal of Materials Science Letters, 11, 1770-1771 (1976) [39] Z. P. Lu and C. T. Liu, 'Glass Formation Criterion for Various Glass- Forming Systems,' Physical Review Letters, 9, (2003) [40] N. Lahl, K. Singh, L. Singheiser, and K. Hilpert, 'Crystallization Kinetics in AO-Al2O3- SiO2-B2O3 Glasses (A = Ba, Ca, Mg),' Journal of Materials Science, 35, 3089-3096 (2000) [41] N. P. B. and R. H. Doremus, 'X-ray Diffraction Studies of Phase Transformations in Heavy-Metal Fluoride glasses,' Journal of Materials Science, 20, 2794-2800 (1985) [42] N. P. Bansal and M. J. Hyatt, 'Crystallization Kinetics of BaO–Al2O3–SiO2 Glasses,' Journal of Materials Research, 4 [5] 1257-1265 (1989) [43] M. J. Hyatt and N. P. Bansal, 'Crystal Growth Kinetics in BaO.Al203.2Si02 and SrO.Al203.2Si02 Glasses,' Journal of Materials Science, 31, 172-184 (1996) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26520 | - |
| dc.description.abstract | BaO-B2O3-SiO2-Al2O3 玻璃系統已被廣泛接受可作為適用在操作溫度為800oC的中溫型固態氧化物燃料電池中的柔性封裝接合材。在材料設計考量方面,玻璃轉換溫度、熱膨脹係數、與燃料電池中其他零組件的化性及物性的匹配性、穩定性皆為適用材料選擇之決定性因素也是影響整個燃料電池的成敗性因素之一。在本研究中主要分成三個主題,首先是玻璃之合成與性質測定包括基本熱性質以及其結晶行為、潤濕行為之觀察;第二,為玻璃結晶動力學之探討,使用了Kissinger關係式以及Piloyan測定法進行結晶活化能和結晶成長機制之計算與分析;最後為與8YSZ和SDC接合界面行為之觀察。結果顯示47BaO-21B2O3-27SiO2-5Al¬2O3 (G1A5)具有良好的玻璃形成性(Glass-Forming-Ability),其玻璃工作溫度範圍為547-694oC(Tg-Tc)與中溫型固態氧化物燃料電池的操作溫度(600-650oC)相符合;在G1A5玻璃中,hexacelsian和BaSiO3為主要生成結晶相,其結晶活化能分別為423±38 kJ/mol和363±190 kJ/mol;在與8YSZ接合部份,G1A5玻璃雖無法與其有良好匹配且有殘留熱應力所導致之裂縫出現,但G1A5卻能與SDC達到良好的匹配性,在長時間使用下(100小時)仍具有良好的接合性質,也無裂縫或結晶相在介面處或玻璃內部生成。另一方面,在本研究中也發現53BaO-12B2O3-34SiO2-1Al¬2O3 (G6) 玻璃可與8YSZ達到長時間的良好接合性。 | zh_TW |
| dc.description.abstract | Several formulations of the glass based on BaO-B2O3-SiO2-Al2O3 systems have been developed and accepted as an appropriate compliant sealing material for planar Solid Oxide Fuel Cells (SOFC) operated at 800oC. The sealing materials in this study are designed by considering lower Tg (glass transition temperature) slightly than the set operation temperature (600-650oC), small CTE mismatch, chemically and physically compatible with the other components, and good wettability with specified substrates. Three main subjects are investigated in this study. The first one is the synthesis and characterization of the glasses, including thermal properties and crystallization behavior. The second is the investigation on crystallization kinetics by using Kissinger equation and Piloyan plot. Third one is to analyze the interfacial stability of the glass with 8YSZ or SDC. Differential thermal analysis (DTA) and Thermal Mechanical Analysis (TMA) were applied to study the thermal properties of the glass. X-ray diffraction (XRD) analysis was conducted to study the crystallization behavior. Scanning and transmission electron microscopes (SEM and TEM) with energy dispersive spectroscopy (EDS) were employed to observe the microstructure and phase evaluation. The results show that 47BaO-21B2O3-27SiO2-5Al¬2O3 (G1A5) possess better glass forming ability (GFA) than other formulation, and has the matched working temperature range (547-694oC) close to the operation temperature 600-650oC of IT-SOFC . The major crystalline phases that would precipitate from the glass matrix during IT-SOFC operation were hexacelsian and BaSiO3. The activation energies for each crystalline phase are 423±38 kJ/mol and 363±19 kJ/mol. When it comes to sealing with 8YSZ, although G1A5 glass can not have a good bonding property with 8YSZ, but it can seal very well with SDC, even after long-term thermal treatment (100 hr at 650oC). On the other hand, in this study we also found out another glass formulation, 53BaO-12B2O3-34SiO2-1Al¬2O3 (G6) can have a good bonding behavior with 8YSZ. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:13:30Z (GMT). No. of bitstreams: 1 ntu-97-R95527004-1.pdf: 8929017 bytes, checksum: 77b13ce58ff994cdd4167ae520e2c00b (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Content IV List of Figure VI List of Table X Chapter 1 Introduction 1 Chapter 2 Literature Review 8 2.1 Characteristics of Sealing Glass 8 2.1.1 Glass melting and Crystallization in Glass-Ceramics 8 2.1.2 Potential Components as Seals for SOFC 10 2.2 Phase Equilibrium of the Ba-B-Si-Al Quaternary System 19 2.3 Crystallization of Glass-Ceramics 23 2.3.1 Isothermal Crystallization 23 2.3.2 Nonisothermal Crystallization 24 2.4 Stability with 8YSZ Electrolyte 28 2.4.1 Glass Transition, Softening, and Crystallization Temperatures 28 2.4.2 Coefficient of Thermal Expansion 28 2.4.3 Chemical Stability under Operation Condition 29 Chapter 3 Experimental Procedures 30 3.1 Materials 30 3.2 Processing of Glass-Ceramics 30 3.2.1 Glass Synthesis 30 3.2.2 Glass Powder, Green Pellet, Cylinder 31 3.2.3 Sintering and Aging 31 3.3 Thermal Treatment and Characterization 31 3.3.1 Preliminary Wetting Test 31 3.3.2 Compatibility Test 32 3.3.3 X-Ray Diffractometric (XRD) Analysis 32 3.3.4 DTA Test 33 3.3.5 TMA Test 33 3.3.6 Microstructural Observations and Elemental Analysis 34 Chapter 4 Results and Discussion 39 4.1 Preparation and Characterization of BaO-B2O3-SiO2-Al2O3 Glass System 39 4.1.1 Effects of B2O3/SiO2 Ratio 39 4.1.2 Effects of Al2O3 40 4.2 Crystallization Behavior of G1A5 Glass-Ceramics 51 4. 3 Wetting and Bonding Compatibility with Electrolyte 78 4.3.1 Wetting Behaviors 78 4.3.2 Expansion Characteristics of Annealed BBSA Glass Systems 79 4.3.3 Thermal Expansion Consideration 80 4.3.4 Long-Term Stability of BBSA Glass with 8YSZ 81 4.3.5 Interface Reaction between G-series Glass and 8YSZ 82 Chapter 5 Conclusion 120 References 122 | |
| dc.language.iso | en | |
| dc.subject | Piloyan測定法 | zh_TW |
| dc.subject | 中溫型固態氧化物燃料電池 | zh_TW |
| dc.subject | 封裝玻璃 | zh_TW |
| dc.subject | BaO-B2O3-SiO2-Al2O3 玻璃 | zh_TW |
| dc.subject | 8YSZ | zh_TW |
| dc.subject | SDC | zh_TW |
| dc.subject | 結晶動力學 | zh_TW |
| dc.subject | Kissinger關係式 | zh_TW |
| dc.subject | crystallization kinetics | en |
| dc.subject | IT-SOFC | en |
| dc.subject | sealing glass | en |
| dc.subject | BaO-B2O3-SiO2-Al2O3 glass | en |
| dc.subject | 8YSZ | en |
| dc.subject | SDC | en |
| dc.subject | Kissinger equation | en |
| dc.subject | Piloyan plot | en |
| dc.title | BaO-B2O3-SiO2-Al2O3玻璃系統使用在中溫型固態氧化物燃料電池適宜性之研究 | zh_TW |
| dc.title | BaO-B2O3-SiO2-Al2O3 Glass Ceramic system used as Sealant for Intermediate-Temperature Solid Oxide Fuel Cell (IT-SOFC) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭錦龍,林金福,徐錦志 | |
| dc.subject.keyword | 中溫型固態氧化物燃料電池,封裝玻璃,BaO-B2O3-SiO2-Al2O3 玻璃,8YSZ,SDC,結晶動力學,Kissinger關係式,Piloyan測定法, | zh_TW |
| dc.subject.keyword | IT-SOFC,sealing glass,BaO-B2O3-SiO2-Al2O3 glass,8YSZ,SDC,crystallization kinetics,Kissinger equation,Piloyan plot, | en |
| dc.relation.page | 125 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 8.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
