Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25998
Title: | 1.調控有機感光染料在光敏化太陽能電池的能階
2.金屬有機配位聚合物形態學之研究 1. Tuning the Energy Level of Organic Sensitizers for Dye-sensitized Solar Cell 2. The Study in Morphology of Coordination Polymer Particles |
Authors: | Ching-Ting Chen 陳敬亭 |
Advisor: | 周必泰 |
Keyword: | 染料,太陽能電池,配位聚合物,形態學, dye,solar cell,coordination polymer,morphology, |
Publication Year : | 2009 |
Degree: | 碩士 |
Abstract: | 在未來需要實際應用光敏化太陽能電池時,價格適當的有機敏化染料會在大量生產上扮演一個重要的角色。因此在本篇論文中,我們設計了一個新型的有機染料 1 (Scheme 2-1),這種染料是利用sonogashira 耦合反應來形成中間的連結,而主要的Salen核心則是應用醛和氨基的imination形成。Salen核心可用來和金屬做配位,藉此達到降低LUMO以令染料的吸收光譜有紅位移的現象。1 and Zn(II)/1 做成光敏化太陽能電池後,在標準AM 1.5的太陽光下,得到的光電流分別是2.51 和 0.49 mA/cm2,開路電壓則是 654 和 734 mV, 填充率是 0.72 和 0.67,轉換效率分別是1.20% 和 0.24%。配位上金屬的染料效率反而差的原因可能是金屬不只配位到Salen的核心,還和負責吸附於二氧化鈦上的酸做配位,因而干擾了染料的吸附。
另一部分則是我們將醋酸鋅和N,N’-dicyanoethenebis (salicylideneimine) dicarboxylic acid溶在dimethyl sulfoxide 或dimethyl formaide中,再利用簡單的水熱法合成配位聚合物粒子。我們利用時間解析掃瞄電子顯微鏡去研究其生長的機制,及粒子生長的因素,像是溶劑或是本身有順式和反式兩種異構物對粒子的大小及形狀的影響。 Cost-effective organic sensitizers will play an important role in the future large-scale production and application of dye-sensitized solar cells. A new organic dye 1 featuring Salen Schiff base core has synthesized via sonogashira coupling reaction and imination. The Salen core can coordinate with metal, which would lower the LUMO and result red shift in absorption. 1 and Zn(II)/1 sensitized solar cells yield a short-circuit photocurrent density of 2.51 and 0.49 mA/cm2, an open-circuit voltage of 654 and 734 mV, and a fill factor of 0.72 and 0.67, corresponding to an overall conversion efficiency of 1.20% and 0.24% under standard AM 1.5 sun light, respectively. The metal which coordinates to Salen core might bind to the carboxylic acid, which plays the role of anchoring group. This would interfere in the dye absorption on TiO2, which resulted in a terrible performance in dye-sensitized solar cell. However, solar cell performances are not solely driven by the energy levels of the materials. Clearly, the molecular weight and the overall organization of dyes are other important key parameters to consider when developing new dye for solar cells. Coordination polymer particles (CPPs) were synthesized by a simple solvothermal reaction of Zinc acetate and N,N’-dicyanoethenebis (salicylideneimine)dicarboxylic acid in dimethyl sulfoxide or dimethyl formaide. The growth mechanism was investigated by time-dependent scanning electron microscope. And the factors, solvents and cis-trans isomerization, which would vary the particle size and conformations, were studied. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25998 |
Fulltext Rights: | 未授權 |
Appears in Collections: | 化學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-98-1.pdf Restricted Access | 9.58 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.