Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2584
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張志中
dc.contributor.authorI-Shing Huen
dc.contributor.author胡亦行zh_TW
dc.date.accessioned2021-05-13T06:42:32Z-
dc.date.available2017-02-17
dc.date.available2021-05-13T06:42:32Z-
dc.date.copyright2017-02-17
dc.date.issued2017
dc.date.submitted2017-02-15
dc.identifier.citationSean O'Rourke, Critical points of random polynomials
and characteristic polynomials of random matrices. arXiv: 1412.4703v1 (2014).
T. R. R. Annapareddy, On critical points of random polynomials and spectrum of certain products of random matrices. arXiv: 1602.05298v1 (2016)
R. Pemantle and I. Rivin, The distribution of zeros of the derivative of a random polynomial}. Advances in Combinatorics, Springer (2013), pp. 259 -- 273.
arXiv:1109.5975.
Z. Kabluchko, Critical points of random polynomials
with independent identically distributed roots}. Proc. Amer. Math. Soc. 143 (2015), no. 2, pp. 695 -- 702. arXiv: 1206.6692v2.
P. L. Cheung, T. W. Ng, J. Tsai,and S. C. P. Yam, Higher order, polar and Sz.-Nagy's generalized derivatives of random polynomials with independent and identically distributed zeros on the unit circle. Computational Methods and Function Theory (2014), pp. 1 -- 28.
Z. Kabluchko and D. Zaporozhets, Asymptotic distribution
of complex zeros of random analytic functions. Ann. Probab., 42 (4) (2014), pp. 1374 -- 1395.
G. W. Anderson,A. Guionnet, and O. Zeitouni, An introduction to random matrices. Cambridge studies in advanced mathematics. Cambridge University Press, 2009.
Z. D. Bai and J. W. Silverstein, Spectral analysis of
large dimensional random matrices. 2nd edition, Springer, 2010.
A. Lytova and L. Pastur, Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. (2009), pp. 1778-1840.
A. Lytova and L. Pastur, Non-Gaussian limiting laws for the entries of regular functions of the Wigner matrices.
arXiv: 1103.2345v2 (2011)
Z. D. Bai, X. Y. Wang, and W. Zhou, CLT for linear spectral statistics of Wigner matrices. Electronic Journal of Probab.
vol 14 (2009) pp. 2391 -- 2417.
I. Jana, K. Saha, and A. Soshnikov, extit{Fluctuations
of linear eigenvalue statistics of random band matrices}.
arXiv: 1412.2445v2 (2015)
L. Y. Li, M. Reed, and A. Soshnikov, Central limit theorem for linear eigenvalue statistics for submatrices of Wigner random matrices. arXiv: 1504.05933v1 (2015)
Phil Kopel, Regularity conditions for convergence of linear
statistics of GUE. arXiv: 1510.02988v2 (2015)
P. Sosoe and P. Wong, Regularity conditions in the
CLT for linear eigenvalue statistics of Wigner matrices.
arXiv: 1210.5666v2 (2015)
W. S. Cheung and T. W. Ng, A companion matrix
approach to the study of zeros and critical points of a polynomial. J. Math. Anal. Appl. 319 (2006), no. 2, pp. 690 -- 707.
N. G. de Bruijn and T. A. Springer, On the zeros of a polynomial and of its derivative II. Indag. Math. 9 (1947), pp. 264 -- 270.
P. Erdos and I. Niven, On the roots of a polynomial and
its derivative. Bull Amer. Math. Soc. 54 (1948), pp. 184 -- 190.
A. T. Bharucha-Reid and M. Sambandham, Random Polynomials. Probability and Mathematical Statistics: a Series of Monographs and Textbooks. Academic Press, 1986.
V. I. Bogachev, Measure Theory. Vol II}. Springer, 2007.
The common limit of the linear statistics of zeros of random polynomials and their derivatives II. In preparation (2017)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2584-
dc.description.abstractLet $ p_n(x) $ be a random polynomial of degree $n$ and
${Z^{(n)}_j}_{j=1}^n$ and ${X^{n, k}_j}_{j=1}^{n-k}, k<n$,
be the zeros of $p_n$ and $p_n^{(k)}$, the $k$th derivative
of $p_n$, respectively.
We show that if the linear statistics
$displaystyle{ %L_n (f) &=&
frac {1}{a_n} left[ fleft( frac {Z^{(n)}_1}{b_n}
ight)
+ cdots + f left(frac {Z^{(n)}_n}{b_n}
ight)
ight]}$
associated with ${Z^{(n)}_j}$
has a limit as $n oinfty$ at some mode of convergence,
the linear statistics associated with ${X^{n, k}_j}$
converges to the same limit at the same mode.
Similar statement also holds for the centered linear statistics
associated with the zeros of $p_n$ and $p_n^{(k)}$,
provided the zeros ${Z^{(n)}_j}$ and the
sequences ${a_n}$ and ${b_n}$ of positive numbers
satisfy some mild conditions.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:42:32Z (GMT). No. of bitstreams: 1
ntu-106-R02221015-1.pdf: 1014409 bytes, checksum: 20debac55d3540792e661ca4850e0841 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書……………………………………………………...……………
誌謝………………………………………………………………..………………….ii
英文摘要………………………………………………………...…………….…….iii
Introduction………………………………………………………….………………..1
A Comparison Identity………………………………………………………………..6
Proofs and Concluding Remarks……………………………………………………...8
Large Deviations………………………...…………………………………………..10
Appendix…………………………………………………………………………….12
Reference…………………………………………………………………….…...… 17
dc.language.isoen
dc.subject普遍性zh_TW
dc.subject隨機多項式zh_TW
dc.subject隨機矩陣zh_TW
dc.subjectrandom matricesen
dc.subjectrandom polynomialsen
dc.subjectuniversalityen
dc.title隨機多項式的一個普遍性zh_TW
dc.titleA Universality of Polynomials with Complex Random Rootsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宏,黃啟瑞,江金倉
dc.subject.keyword隨機多項式,隨機矩陣,普遍性,zh_TW
dc.subject.keywordrandom polynomials,random matrices,universality,en
dc.relation.page18
dc.identifier.doi10.6342/NTU201700594
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-02-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf990.63 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved