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A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS

WITH COMPLEX RANDOM ROOTS

I-SHING HU

Abstract. Let pn(x) be a random polynomial of degree n and {Z(n)
j }nj=1 and

{Xn,k
j }

n−k
j=1 , k < n, be the zeros of pn and p

(k)
n , the kth derivative of pn, respectively.

We show that if the linear statistics
1

an

[
f

(
Z

(n)
1

bn

)
+ · · ·+ f

(
Z

(n)
n

bn

)]
associated

with {Z(n)
j } has a limit as n→∞ at some mode of convergence, the linear statistics

associated with {Xn,k
j } converges to the same limit at the same mode. Similar

statement also holds for the centered linear statistics associated with the zeros of

pn and p
(k)
n , provided the zeros {Z(n)

j } and the sequences {an} and {bn} of positive
numbers satisfy some mild conditions.

1. Introduction

Fix a probability space (Ω,F ,P) and let {pn(z)}∞n=1 be a sequence of random
polynomials such that deg pn = n. We observe that the randomness of polynomials
can be introduced in several di�erent ways.

Type 1: Given a triangular array of random zeros {Z(n)
j }nj=1, n = 1, 2, . . ., let

(1.1) pn(z) = (z − Z(n)
1 ) · · · (z − Z(n)

n ).

Here the coe�cient of zn is set to be 1 for simplicity.

Type 2: Given a triangular array of random coe�cients {a(n)j }nj=0, n = 1, 2, . . .,
let

(1.2) pn(z) = a(n)n zn + · · ·+ a
(n)
1 z + a

(n)
0 .

Type 3: Given a sequence of random matrices {A(n)}∞n=1, let

(1.3) pn(z) = det(zI − A(n)),

the characteristic polynomial of A(n). Here I, the identity matrix, and A(n)

are square matrices of size n.

2010 Mathematics Subject Classi�cation. Primary: 30C15, 60B10; secondary: 60B20, 60G57,

60F05, 60F15, 60F25.
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No matter how pn is constructed, we always denote the zeros of pn by Z
(n)
1 , . . . , Z

(n)
n .

Next, for each positive integer k < n, let p
(k)
n be the kth derivative of pn, and X

n,k
j , j =

1, 2, . . . , n − k, be the zeros of p
(k)
n . In particular, when k = 1, Xn,1

1 , · · · , Xn,1
n−1 are

called the critical points of pn. The relation between the zeros and the critical points
of polynomials has been much studied. For example, the Gauss-Lucas theorem asserts
that all critical points of a non-constant polynomial f lie inside the closed convex hull
formed by the zeros of f . It follows by induction that the zeros of f (k), k < deg f ,
also lie inside the same closed convex hull. More re�nements of Gauss-Lucas theorem
can be found in [1] and the references therein. A recent paper [2] also discussed some
related results and examples.
On the other hand, R. Pemantle and I. Rivin initiated a probabilistic study on the

limit of the critical points of random polynomials of Type 1. Consider the following
probability measures:

(1.4) µn =
1

n

n∑
j=1

δ
Z

(n)
j
, and µ(k)

n =
1

n− k

n−k∑
j=1

δXn,k
j
, 1 ≤ k < n,

where δz is the Dirac measure concentrated on z. µn and µ
(k)
n are the empirical mea-

sures associated with the zeros {Z(n)
j }nj=1 and {Xn,k

j }n−kj=1 , respectively. R. Pemantle

and I. Rivin ([3]) showed that, if Z
(n)
j = Zj and {Zj}∞j=1 is a sequence of independent

and identically distributed (i.i.d.) random variables governed by a common law ν,

then µ
(1)
n

w→ ν almost surely (a.s.) as n → ∞ provided ν satis�es certain energy

condition. In this paper
w→ means �converges weakly� or �converges in distribution�.

In the same i.i.d. setting without any further assumption on the probability law ν,

Z. Kabluchko ([4]) proved in great generality that µ
(1)
n

w→ ν in probability as n→∞.
For the case of higher order derivatives, in the i.i.d. setting, if the probability mea-
sure ν is supported on the unit circle in C, P. L. Cheung et. al. ([5]) showed that

µ
(k)
n

w→ ν a.s. as n → ∞. Similar results for the zeros of the generalized derivatives
of polynomials are also obtained in [5].
To state a result of Type 2 polynomials, recall that a polynomial is called aKac poly-

nomial ([6]) if it has the form
n∑
j=0

ξjz
j, where {ξj}∞j=0 is a sequence of non-degenerate

i.i.d. random variables. Furthermore, given a sequence of deterministic complex

numbers {wj}∞j=0, a polynomial of the form
n∑
j=0

ξjwjz
j is called a Littlewood-O�ord

random polynomial. Clearly, any kth derivative of a Kac polynomial is a Littlewood-
O�ord random polynomial. Z. Kabluchko and D. Zaporozhets ([6] and Theorem 14 of

[1]) proved that both sequences of the empirical measures {µn} and {µ(k)
n } converge

weakly to the uniform distribution on the unit circle of C centered at the origin in
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probability as n → ∞, provided that E[log(1 + |ξ0|)] < ∞. See [6] for the explicit
statements of the theorems and examples.
Under various settings and assumptions, the eigenvalue statistics of random ma-

trices/sample covariance matrices exhibits various interesting and important limit
behavious, for example the circle law, semicircle law, Mar£enko-Pastur law, central
limit theorem, large deviations, and so on. See [7] and [19] for a systematic introduc-
tion. To name a result related to our work, consider a sequence of random Hermitian
matrices {A(n)}∞n=1 with pn its characteristic polynomial. S. O'Rourke ([1]) showed

that the Lévy distance between µn and µ
(1)
n tends to zero almost surely as n → ∞.

This observation implies that a.s. {µ(1)
n } converges weakly to the same semicircle law

as {µn} does. Such phenomenon that {µ(1)
n } converges weakly to the same law as that

of {µn} (at some mode of convergence) was further demonstrated for several compact
classical matrix groups by S. O'Rourke in the same paper. Check [1] (theorem 6,
corollary 7, theorem 9, and remark 10) for explicit statements and references therein.
Here we merely point out that all the limit laws of the eigenvalue statistics of the
matrix models considered are compactly supported in C.
In view of the fact that all the results concerning the relation between {µn} and

{µ(k)
n } reviewed above are of the type of law of large numbers, it is natural to ask

how about other types of limit theorem? The goal of this paper is to show that if
certain limit property, for example law of large numbers, central limit theorem, law

of iterated logarithm, and so on, holds for the linear statistics of {Z(n)
j }nj=1 (see below

for the precise statement), then the same limit property passes to that of {Xn,k
j }n−kj=1

for any k, provided the zeros {Z(n)
j }nj=1 satisfy some mild conditions which we now

state.
Denote by =z the imaginary part of a complex number z.
A1. There exists a non-negative constant C0 ≥ 0 independent of n such that

(1.5) sup
n∈N

max
1≤j≤n

|=Z(n)
j | ≤ C0 a.s.

That is, the imaginary parts of {Z(n)
j } are uniformly bounded with probability one.

Since every zero of p
(k)
n lies inside the closed convex hull of the zeros of p

(k−1)
n by

Gauss-Lucas theorem, we know by induction that

(1.6) sup
n∈N

max
1≤k<n

max
1≤j≤n−k

|=Xn,k
j | ≤ C0 a.s.

When the zeros are real numbers, we put C0 = 0.

Recall that µn
w→ ν is equivalent to lim

n→∞

ˆ
f dµn = lim

n→∞

1

n

n∑
j=1

f(Z
(n)
j ) =

ˆ
f dν

for each bounded continuous function f . It is therefore quite common to study such
sums (namely, linear statistics) for various categories of test functions. [9], [10], [11],
[12], and [13] are a few examples. In particular, the issue of regularity conditions for
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the test functions is discussed in [14] and [15]. In this paper we restrict ourselves to

regular test functions f such that f, f ′ ∈ L∞, f̂ exists and f(x) =
´
f̂(t)eitx dt, and

(1.7)

ˆ
R
|f̂(t)|e3C0|t| dt <∞,

where i =
√
−1, f̂(t) = 1

2π

´
f(u)e−itu du is the Fourier transform of f , and C0 is the

same absolute constant appeared in (1.5).
To adapt to the di�erent scalings in various limit theorems, we consider di�erent

sequences of positive numbers for di�erent linear statistics to be de�ned later. Below
we list three groups of assumptions to be used in the three main theorems of this
paper, respectively.
A2. There exists a sequence of positive numbers {an}∞n=1 such that

lim
n→∞

an =∞,(1.8)

lim
n→∞

n |an−k − an−k−1|
an−kan−k−1

= 0, for each �xed k < n− 1,(1.9)

lim
n→∞

sup
1≤j≤n

{
|Z(n)

j |
an−k

}
= 0 a.s. for each �xed k < n.(1.10)

A3. There exists a sequence of positive numbers {bn}∞n=1 such that

lim
n→∞

bn =∞,(1.11)

lim
n→∞

|bn−k − bn−k−1|
bn−kbn−k−1

[
n∑
j=1

|Z(n)
j |

]
= 0 a.s. for each �xed k < n− 1,(1.12)

lim
n→∞

sup
1≤j≤n

{
|Z(n)

j |
bn−k

}
= 0 a.s. for each �xed k < n.(1.13)

A4. There exist two sequences of positive numbers {an}∞n=1 and {bn}∞n=1 such that

lim
n→∞

an = lim
n→∞

bn =∞,(1.14)

lim
n→∞

n |an−k − an−k−1|
an−kan−k−1

= 0, for each �xed k < n− 1,(1.15)

lim
n→∞

|bn−k − bn−k−1|
an−k−1bn−kbn−k−1

[
n∑
j=1

|Z(n)
j |

]
= 0 a.s. for each �xed k < n− 1,(1.16)

lim
n→∞

sup
1≤j≤n

{
|Z(n)

j |
an−kbn−k

}
= 0 a.s. for each �xed k < n.(1.17)
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Now we are ready to introduce the key objects that we want to study. Consider

the following three linear statistics associated with {Z(n)
j }

Ln,1(f) =
1

an

[
f
(
Z

(n)
1

)
+ · · ·+ f

(
Z(n)
n

)]
,

Ln,2(f) = f

(
Z

(n)
1

bn

)
+ · · ·+ f

(
Z

(n)
n

bn

)
,

Ln,3(f) =
1

an

[
f

(
Z

(n)
1

bn

)
+ · · ·+ f

(
Z

(n)
n

bn

)]
,

and the three linear statistics associated with {Xn,k
j }

L
(k)
n,1(f) =

1

an−k

[
f
(
Xn,k

1

)
+ · · ·+ f

(
Xn,k
n−k

)]
,

L
(k)
n,2(f) = f

(
Xn,k

1

bn−k

)
+ · · ·+ f

(
Xn,k
n−k

bn−k

)
,

L
(k)
n,3(f) =

1

an−k

[
f

(
Xn,k

1

bn−k

)
+ · · ·+ f

(
Xn,k
n−k

bn−k

)]
.

It is also necessary to consider the centered (mean zero) linear statistics

L̄n,`(f) = Ln,`(f)− E[Ln,`(f)], L̄
(k)
n,`(f) = L

(k)
n,`(f)− E[L

(k)
n,`(f)], ` = 1, 2, 3.

For example, Ln,1(f) with an = n and L̄n,1(f) with an =
√
n play the typical roles

in law of large numbers and central limit theorem, respectively. In the random matrix
models, one studies Ln,3 with an = n, bn =

√
n for law of large numbers results. In

these cases A2 and A4 are valid obviously.

Theorem 1. Let the random zeros {Z(n)
j }nj=1 and the sequence {an} of positive num-

bers be given as above such that they satisfy the assumptions A1 and A2. If the linear

statistics Ln,1(f) has a limit as n→∞ at some mode of convergence, then, for each

k < n, the linear statistics L
(k)
n,1(f) converges to the same limit at the same mode of

convergence. Similar statement holds for L̄n,1(f) and L̄
(k)
n,1(f).

Theorem 2. Let the random zeros {Z(n)
j }nj=1 and the sequence {bn} of positive num-

bers be given as above such that they satisfy the assumptions A1 and A3. If the linear

statistics L̄n,2(f) converges weakly to some probability law ν = νf as n → ∞, then

L̄
(k)
n,2(f)

w→ νf for each �xed k < n.

Theorem 3. Let the random zeros {Z(n)
j }nj=1 and the sequences {an} and {bn} of

positive numbers be given as above such that they satisfy the assumptions A1 and A4.

If the linear statistics Ln,3(f) has a limit as n → ∞ at some mode of convergence,
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then, for each k < n, the linear statistics L
(k)
n,3(f) converges to the same limit at the

same mode of convergence. Similar statement holds for L̄n,3(f) and L̄
(k)
n,3(f).

Remark 1. Consider the Type 1 random polynomials with Z
(n)
j = Zj and {Zj} being

an i.i.d. sequence. In this case the uniform condition (1.10) in A2 can be weakened
to

lim
n→∞

|Z1|+ · · ·+ |Zn|
an−kn

= 0 a.s. for each �xed k < n.

Remark 2. Again consider the Type 1 random polynomials with Z
(n)
j = Zj and {Zj}

being an i.i.d. sequence. This is the setting studied in [3], [4], and [5]. Note that
our Theorem 1 establishes, in addition to law of large numbers result, also central
limit theorem, law of iterated logarithm, and so on, for the linear statistics of {Xn,k

j }.
However, Theorem 2 is not as interesting since it does not include the central limit

theorem of random matrix models. This is because the size of the zeros Z
(n)
j is of order√

n = bn, and therefore the conditions (1.12) and (1.13) would not hold. Reasonable
condition(s) should involve the centered quantities.

In Section 2 we establish a comparison identity. It is elementary, and yet crucial
to our results. In Section 3 we prove three theorems and make some �nal remarks.

2. A comparison identity

First we state (with some modi�cations) a theorem of Cheung and Ng ([16]) which
is the starting point of our argument.

Proposition 4 (Theorem 1.1 of [16]). The set of all critical points of pn(z) =∏n
k=1(z − zk), n ≥ 2, is the same as the set of all eigenvalues of the (n− 1)× (n− 1)

matrix Mn−1 :

(2.1) Mn−1 = Dn−1 +
1

n
(z1In−1 −Dn−1) Jn−1,

where

(2.2) Dn−1 =


z2 0 · · · 0
0 z3 · · · 0
...

...
. . .

...

0 0 · · · zn

 , Jn−1 =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

 ,

and In−1 is the identity matrix of size n− 1.

Denote by TrM the trace of a square matrix M . Our results rely on the following
observation.

Lemma 5. Let Mn−1 and Dn−1 be de�ned as in Proposition 2 and i =
√
−1. Then

(2.3) Tr
(
eitMn−1

)
− Tr

(
eitDn−1

)
=
icn−1
n

Tr
(
J̃n−1 e

itDn−1

)
,
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where

cn−1 = cn−1(t) =

ˆ t

0

exp

(
iu
S̃n−1
n

)
du,

S̃n−1 = (z1 − z2) + · · ·+ (z1 − zn), and

J̃n−1 =


z1 − z2 0 · · · 0

0 z1 − z3 · · · 0
...

...
. . .

...

0 0 · · · z1 − zn

 Jn−1 .

Proof. It can be proved straightforwardly by Taylor expansions. However, to derive
the constant cn−1 in a more natural way, we �rst use the Duhamel formula

e(L1+L2)t − eL1t =

ˆ t

0

eL1(t−τ)L2e
(L1+L2)τ dτ

with L1 = iDn−1 and L1 + L2 = iMn−1. In fact, L2 = i
n
J̃n−1. Since Tr(eA+B) =

Tr(eA eB) by Tr(AB) = Tr(BA), the left hand side of (2.3) equals

(2.4)
i

n

ˆ t

0

Tr
(
J̃n−1e

itDn−1 e(iuJ̃n−1)/n
)
du.

One can show by induction that J̃kn−1 = S̃k−1n−1J̃n−1, k ∈ N. After using this fact in

the Taylor expansion of e(iuJ̃n−1)/n, the integrand within the integral of (2.4) can be
simpli�ed to

(2.5) Tr
(
J̃n−1e

itDn−1

)
e(iuS̃n−1)/n.

This completes the proof. �

Remark 3. The Dn−1 appeared in [16] is a diagonal matrix with diagonal entries
{z1, . . . , zn−1}, while we choose a di�erent one given in (2.2) by the symmetry among
the zeros. The Mn−1 in (2.1) is modi�ed accordingly.

Remark 4. Observe that the terms in (2.5) can be expressed in a more symmetric
way:

S̃n−1
n

= z1 −
∑n

j=1 zj

n
,(2.6)

1

n
Tr
(
J̃n−1e

itDn−1

)
= z1

(∑n
j=1 e

itzj

n

)
−
∑n

j=1 zje
itzj

n
.(2.7)
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Suppose that {zj}nj=1 satis�es the bound max
1≤j≤n

|=zj| ≤ C0, then it is easy get that

|cn−1(t)| ≤
e2C0|t| − 1

2C0

,(2.8) ∣∣∣∣ 1nTr
(
J̃n−1e

itDn−1

)∣∣∣∣ ≤ eC0|t|

(
|z1|+

∑n
j=1 |zj|
n

)
.(2.9)

When all zeros are real, C0 = 0 and one simply gets |cn−1(t)| ≤ |t|. These are used in
the proofs of three theorems.

3. Proofs and concluding remarks

We now prove Theorem 1.

Proof. Consider the case of Ln,1(f) and L
(1)
n,1(f) (k = 1). To prove the theorem in

this case, it su�ces to show that Ln,1(f) − L
(1)
n,1(f) → 0 a.s. as n → ∞. Write

Ln,1(f)− L(1)
n,1(f) = Wn,1 +Wn,2, where

Wn,1 =
1

an

[
f
(
Z

(n)
1

)
+ · · ·+ f

(
Z(n)
n

)]
− 1

an−1

[
f
(
Z

(n)
2

)
+ · · ·+ f

(
Z(n)
n

)]
=

f
(
Z

(n)
1

)
an

+
an−1 − an
an−1an

n∑
j=2

f
(
Z

(n)
j

)
,

and

Wn,2 =
1

an−1

[
f
(
Z

(n)
2

)
+ · · ·+ f

(
Z(n)
n

)]
− 1

an−1

[
f
(
Xn,1

1

)
+ · · ·+ f

(
Xn,1
n−1
)]
.

Clearly

|Wn,1| ≤
‖f‖∞
an

+
n |an−1 − an|‖f‖∞

an−1an
→ 0 a.s.

by (1.8) and (1.9) ofA2. Next we apply Lemma 3 with Z
(n)
j in place of zj, j = 1, . . . , n,

to obtain that

Wn,2 =
1

an−1

ˆ
f̂(t)

[
Tr
(
eitDn−1

)
− Tr

(
eitMn−1

)]
dt

=
1

an−1

ˆ
f̂(t)

cn−1(t)

n
Tr
(
J̃n−1 e

itDn−1

)
dt.

Since we assume A1, the estimates (2.8) and (2.9) in Remark 4 can be used to yield
that

(3.1) |Wn,2| ≤
1

2C0

(ˆ
|f̂(t)|e3C0|t| dt

)(
|Z(n)

1 |
an−1

+

∑n
j=1 |Z

(n)
j |

nan−1

)
.
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By the regularity condition (1.7) together with (1.8) and (1.10) of A2, we conclude
that |Wn,2| → 0 a.s. when n→∞.

For k > 1 we decompose Ln,1(f)− L(k)
n,1(f) = Ln,1(f)− L(1)

n,1(f) +
∑k−1

j=1 L
(j+1)
n,1 (f)−

L
(j)
n,1(f) and need to show that each |L(j)

n,1(f) − L(j+1)
n,1 (f)| → 0 a.s. We simply follow

the same strategy as above. Two facts can be useful when estimating the di�erence
between the traces of two matrices. First one is the basic relation between roots and
coe�cients:

Z
(n)
1 + · · ·+ Z

(n)
n

n
=
Xn,k

1 + · · ·+Xn,k
n−k

n− k
, k < n.

The second relation can be found in [17] and [18] :

|Xn,k
1 |+ · · ·+ |X

n,k
n−k|

n− k
≤ · · · ≤

|Xn,1
1 |+ · · ·+ |X

n,1
n−1|

n− 1
≤ |Z

(n)
1 |+ · · ·+ |Z

(n)
n |

n
.

The rest is easy and is omitted. When demonstrating the weak convergence of L̄
(k)
n,1

from that of L̄n,1, the converging together lemma should be applied to complete the
proof. �

The proofs of Theorem 2 and Theorem 3 are similar to that of Theorem 1. A mean
value inequality and the boundedness of |f ′| can justify the transference of the scales
from bn−k to bn−k−1. When estimating the terms like (3.1), the uniform condition
(1.13) in A3 and/or (1.16) in A4 would be helpful.
Now prove Theorem 2.

Proof. Again, since

L̃n,2 − L̃(1)
n,2 = (

n∑
k=1

f(
Z

(n)
k

bn
)− Ef(

Z
(n)
k

bn
))− (

n∑
k=2

f(
Z

(n)
k

bn−1
)− Ef(

Z
(n)
k

bn−1
))

+ (
n∑
k=2

f(
Z

(n)
k

bn−1
)− Ef(

Z
(n)
k

bn−1
))− (

n−1∑
k=1

f(
Xn,1
k

bn−1
)− Ef(

Xn,1
k

bn−1
)),

where (again) �rst two summation terms vanishes by A3 and f, f ′ ∈ L∞. The last
two summation terms (again) are equal toˆ
f̂(t)

[
Tr
(
eitDn−1/bn−1

)
− Tr

(
eitMn−1/bn−1

)]
−E

[
Tr
(
eitDn−1/bn−1

)
− Tr

(
eitMn−1/bn−1

)]
dt,

hence it is bounded by

1

2C0

(ˆ
|f̂(t)|e3C0|t| dt

)[(
|Z(n)

1 |
bn−1

+

∑n
j=1 |Z

(n)
j |

nbn−1

)
+ E

(
|Z(n)

1 |
bn−1

+

∑n
j=1 |Z

(n)
j |

nbn−1

)]
which also vanishes by A1 and A3. �

Finally prove Theorem 3.
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Proof. Similarly

Ln,3 =
1

an

n∑
k=1

f(
Z

(n)
k

bn
)− 1

an−1

n∑
k=2

f(
Z

(n)
k

bn−1
) +

1

an−1

n∑
k=2

f(
Z

(n)
k

bn−1
)− 1

an−1

n−1∑
k=1

f(
Xn,1
k

bn−1
),

where (again) �rst two summation terms vanishes by A4 and f, f ′ ∈ L∞. The last
two summation terms (again) are equal to

1

an−1

ˆ
f̂(t)

[
Tr
(
eitDn−1/bn−1

)
− Tr

(
eitMn−1/bn−1

)]
dt

hence it is bounded by

1

2an−1C0

(ˆ
|f̂(t)|e3C0|t| dt

)(
|Z(n)

1 |
bn−1

+

∑n
j=1 |Z

(n)
j |

nbn−1

)
which also vanishes by A1 and A4. �

Remark 5. In the proofs of the theorems we deal with the strongest mode of conver-

gence, namely the almost sure convergence, of Ln,`(f) − L(k)
n,`(f) → 0, ` = 1, 2, 3. If

the original Ln,`(f), ` = 1, 3, converges at a weaker mode, an alternative argument
using weaker estimates should be considered. Consequently, it is conceivable that the
assumptions weaker than A1 and A2 (or A4) might be su�cient for the theorems to
hold, and the regularity conditions on the test functions used in the linear statistics
might also be relaxed.

Remark 6. One can show that if the empirical measure associated with the zeros of
pn, under appropriate scaling, obeys a large deviations principle, so does the empirical

measure associated with the zeros of p
(k)
n for each k. This is treated elsewhere ([21]).

4. Large Deviations

But what can we say if we only have large deviation principle?

Observe that: if {xn}n∈N , {yn}n∈N ⊂ R and lim
n→∞

xn − yn = 0, then

lim inf
n→∞

xn = lim inf
n→∞

yn

and

lim sup
n→∞

xn = lim sup
n→∞

yn.

So if

lim
n→∞

Pr {Xn ∈ A} − Pr {Yn ∈ A} = 0
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for any A is Borel measurable and {Xn}n∈N satisfy large deviation principle, then
{Yn}n∈N also satisfy large deivation principle with the same rate function.

Obviously, the total variation

sup
A
|Pr {Xn ∈ A} − Pr {Yn ∈ A} |

vanishes as n→∞ implies

lim
n→∞

Pr {Xn ∈ A} − Pr {Yn ∈ A} = 0.

Nevertheless, even

lim
n→∞

Xn − Yn = 0

almost surely does not imply the total variation vanishes as n → ∞. One way to
guarantee is that

Lemma 6. If there is another measure m such that Pr {Xn ∈ A} =
´
A

fndm and

Pr {Yn ∈ A} =
´
A

gndm for all A is measurable, where fn, gn are integrable w.r.t.

measure m, then

lim
n→∞

sup
A
|Pr {Xn ∈ A} − Pr {Yn ∈ A} | = 0⇔ lim

n→∞

ˆ
|fn − gn|dm = 0.

Proof: One side is trivial sinceˆ
|fn − gn|dm ≥

ˆ

A

|fn − gn|dm ≥ |
ˆ

A

fn − gndm|,

for any A is measurable. Conversely, because

sup
A
|Pr {Xn ∈ A}−Pr {Yn ∈ A} | = max


ˆ

{fn−gn≥0}

fn − gndm, −
ˆ

{fn−gn<0}

fn − gndm

→ 0

as n→∞, we haveˆ
|fn − gn|dm =

ˆ

{fn−gn≥0}

fn − gndm −
ˆ

{fn−gn<0}

fn − gndm→ 0

as n→∞. Done.

This is the end of our main results.
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5. Appendix

Proof of Proposition 4: Since (here pn(z) = (z − Z1) · · · (z − Zn))

0 =
p′n(w)

pn(w)
=

n∑
j=1

1

w − Zj

if w is a critical point of pn and w is not equal to any of roots Zj. We have

1

w − Zn
=
n−1∑
j=1

1

Zj − w
,

so
n∑
j=1

Zj − Zn
Zj − w

=
n∑
j=1

Zj − w + w − Zn
Zj − w

= n.

Conversely this observation reveals that if a number λ /∈ {Zj}n−1j=1 and
n∑
j=1

Zj−Zn

Zj−λ = n,

then λ 6= Zn and p′n(λ) = 0.

First we would show any critical point w of pn, w /∈ {Zj}nj=1, is an eigenvalue of M
with eigenvector (

Z1−Zn

n(Z1−w) , · · · , Zn−1−Zn

n(Zn−1−w)

)T
via

M


Z1−Zn

n(Z1−w) ,
...

Zn−1−Zn

n(Zn−1−w)

 =


Z1(Z1−Zn)
n(Z1−w)

...
Zn−1(Zn−1−Zn)
n(Zn−1−w)

− 1

n2

n−1∑
j=1

Zj − Zn
Zj − w

D

1
...
1



=


Z1(Z1−Zn)
n(Z1−w)

...
Zn−1(Zn−1−Zn)
n(Zn−1−w)

−


Z1(Z1−Zn)
n
...

Zn−1(Zn−1−Zn)
n

 = w


Z1(Z1−Zn)
n(Z1−w)

...
Zn−1(Zn−1−Zn)
n(Zn−1−w)

 .

If w is equal to one of roots saying Zi, then w = Zi = Zj, i 6= j. In particular if i = n,
then w = Zn is an eigenvalue of M with eigenvector

ej +
(
1, · · · , 1

)T
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by showing

M


1
...
2
...
1

 =


Z1
...

2Zj
...

Zn−1

−


Z1 − Zn
...
0
...

Zn−1 − Zn

 = Zn


1
...
2
...
1

 ,

where ej is the standard basis, i.e. , 2 only occurs at jth component.

For w = Zi = Zj, i, j ≤ n− 1, we have

M(ei − ej) = D(ei − ej) = w(ei − ej).

Therefore
{z εC | p′n(z) = 0} ⊆ σ(M).

Conversely if λ ∈ σ(M) with eigenvector
(
v1, · · · , vn−1

)T
, i.e. (Z1 − λ)v1

...
(Zn−1 − λ)vn−1

 =
1

n
(
n−1∑
j=1

vj)

 Z1 − Zn
...

Zn−1 − Zn

 .

If
n−1∑
j=1

vj = 0, then at least two of {vj}n−1j=1 , saying v1 and v2, are non-zero. Hence

λ = Z1 = Z2. Now assume
n−1∑
j=1

vj 6= 0. If λ = Zj, j ≤ n − 1, then Zn = Zj = λ. If

λ /∈ {Zj}n−1j=1 , then

vj
n−1∑
i=1

vi

=
Zj − Zn
n(Zj − λ)

.

Summing up all j from 1 to n− 1 we have
n∑
j=1

Zj − Zn
Zj − λ

= n,

as a result,
{z εC | p′n(z) = 0} ⊇ σ(M).
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Adopt the proof above we have

Lemma 7 (Gauss-Lucas Theorem). Again pn(x) :=
n∏
k=1

(x− Zk), we have

{z εC | p′n(z) = 0} ⊆ Conv {Zk}nk=1 .

Proof: Let w ∈ {z εC | p′n(z) = 0} \ {Zk}nk=1 (otherwise it is trivial), then

0 =
p′n(w)

pn(w)
=

n∑
j=1

1

w − Zj
=

n∑
j=1

w − Zj
|w − Zj|2

,

so we conclude that

w =

n∑
j=1

Zj

|w−Zj |2

n∑
j=1

1
|w−Zj |2

∈ Conv {Zk}nk=1 .

From above we can have

Proposition 8. If {Zk}nk=1 ⊆ Lp, p ≥ 1, then

{z εC | p′n(z) = 0} ⊆ Lp.

Proof: Let w ∈ {z εC | p′n(z) = 0} \ {Zk}nk=1 (otherwise it is trivial), then (through
Jensen's inequality)

E|w|p = E|
n∑
j=1

Zj

|w−Zj |2
n∑
k=1

1
|w−Zk|2

|p ≤ sup
1≤k≤n

{E|Zk|p} <∞.

The ideas below originally follow from [19]: First it is easy to see that

Proposition 9 ([19], Lemma 2.2 and Lemma 2.3). If every coe�cients ak of a random

polynomial
n∑
k=0

akx
k are in Lp, p ≥ 1, then the polynomial is continuous in Lp, i.e.

lim
x→x0

E|
n∑
k=0

akx
k−

n∑
k=0

akx
k
0|p = 0

and hence continuous in probability.

We also observe that
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Proposition 10. Let pn(x) :=
n∑
k=0

akx
k be a random polynomial, then

E [pn(β)− pn(α) | σ {pn(x) : x ≤ α}] = E

[ˆ β

α

p′n(x)dx | σ {ak}nk=1

]
,

hence pn(x) is a sub- or super-martingale on [a, b] ⊆ R if p′n(x) ≥ or ≤ 0 on [a, b].

Nevertheless we still need to answer a fundamental question: are roots of

pn(x) :=
n∑
k=0

akx
k

measurable if complex coe�cients {ak}nk=0 are measurable?

To answer the question, we need measurable selection Theorem due to Kuratowski
and Ryll-Nardzewski, and the proof presented here follows from [20].

Theorem 11 ([20], Theorem 6.9.3). Let (Ω,Σ)be a measurable space, X be a Polish

space and F : Ω → X be a mapping with values in the family of non-empty closed

subsets of X. If for every open subset U ⊂ X, we have

F̃ (U) := {ω ∈ Ω : F (ω) ∩G 6= φ} ∈ Σ.

Then F has a Σ−measurable selection f : Ω→ X such that

f (ω) ∈ F (ω) , ∀ω ∈ Ω.

Proof: Let {xn}n∈N be a countable dense subset of X. De�ne f0 : Ω→ {xn}n∈N as

f0 (ω) := xj,

where

j := inf {n ∈ N : F (ω) ∩B (xn, 1) 6= φ} .
Hence f0 is Σ−measurable since

f−10 {xj} = F̃ (B (xj, 1)) \
j−1
∪
m=1

F̃ (B(xm, 1)) ∈ Σ.

Now we construct inductively measurable mappings fk : Ω→ {xn}n∈N such that

d (fk (ω) , fk+1 (ω)) < 2−k+1

and

d (fk (ω) , F (ω)) < 2−k.

Suppose fk is already constructed. Fix k, then for all disjoint f−1k {xi} , i ∈ N,
de�ne

fk+1 : f−1k {xi} → {xn}n∈N



doi:10.6342/NTU201700594

A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 16

as
fk+1 (ω) := xj,

where
j := inf

{
n ∈ N :

(
F (ω) ∩B

(
xi, 2

−k)) ∩B (xn, 2−k−1) 6= φ
}

since F (ω) ∩B
(
xi, 2

−k) 6= φ, ∀ω ∈ f−1k {xi}.
So

d (fk+1 (ω) , F (ω)) < 2−k−1

and
d (fk (ω) , fk+1 (ω)) < 2−k + 2−k−1 < 2−k+1.

As a result, we have a Σ−measurable mapping

lim
k→∞

fk (ω) =: f (ω) ∈ F (ω) ,

since {fk (ω)}k≥0 is Cauchy and φ 6= F (ω) is closed.

Now we are able to answer the question.

Theorem 12 ([19], Theorem 2.2). All roots of

pn(x) :=
n∑
k=0

akx
k

are Σ−measurable if complex coe�cients {ak}nk=0 are Σ−measurable.

Proof: Let F (ω) := p−1n {0} ⊂ C, which is closed and non-empty in C by Funda-
mental Theorem of Algebra, and let D be countable dense subset of C.
Observe that for every open subset G ⊂ X,

F̃ (G)c = ∪
x∈G
{ω ∈ Ω : pn (x) ∈ {0}c} := ∪

x∈G
Ax,

i.e.,

ω ∈ Ax, x ∈ G ⇐⇒
n∑
k=0

ak (ω)xk 6= 0.

Fix such ω ∈ Ax and x ∈ G, then

∃ x̃ ∈ G ∩D 3
n∑
k=0

ak (ω) x̃k ∈ {0}c

since pn(ω)−1 ({0}c) is open (then x̃ is in a neighbourhood of x contained in pn(ω)−1 ({0}c)
such that

n∑
k=0

ak (ω) x̃k 6= 0) and x̃ ∈ D ⊂ C is dense.
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Hence

F̃ (G)c = ∪
x∈G

Ax = ∪
x̃∈G∩D

Ax̃ ∈ Σ.

Applying above measurable selection theorem, we have

Z1 (ω) ∈ p−1n {0}

is Σ−measurable.
Take

pn−1(x) :=
pn(x)

x− Z1

(we may assume an 6= 0 a.s.) and then the result follows by backward induction.
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