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ABSTRACT. Let p,(z) be a random polynomial of degree n and {Zj(n)};‘:l and
{X;Lk }”*k k < n, be the zeros of p,, and p%k), the kth derivative of p,,, respectively.

Jj=1>
()

with {Z j(.")} has a limit as n — 0o at some mode of convergence, the linear statistics

We show that if the linear statistics — associated

Qan

associated with {Xjnk} converges to the same limit at the same mode. Similar
statement also holds for the centered linear statistics associated with the zeros of
pn, and p%k), provided the zeros {Z j(n)} and the sequences {a,} and {b,} of positive
numbers satisfy some mild conditions.

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS
WITH COMPLEX RANDOM ROOTS

I-SHING HU

ABSTRACT. Let p,(z) be a random polynomial of degree n and {Zj(n)}?:l and

{X;”k}?;f, k < n, be the zeros of p,, and pgk), the kth derivative of p,,, respectively.

associated

We show that if the linear statistics — f bl— +ot f b"

with {Z J(n)} has a limit as n — oo at some mode of convergence, the linear statistics

associated with {X]"-“k} converges to the same limit at the same mode. Similar
statement also holds for the centered linear statistics associated with the zeros of
pp, and pgf), provided the zeros {ZJ(")} and the sequences {a, } and {b,} of positive
numbers satisfy some mild conditions.

1. INTRODUCTION

Fix a probability space (Q,F,P) and let {p,(z)}>>, be a sequence of random
polynomials such that deg p, = n. We observe that the randomness of polynomials
can be introduced in several different ways.

Type 1: Given a triangular array of random zeros {ZJ(-n) nn=1,2,.. let

(1.1) pu(2) = (2= Z(") - (2 = Z[V).

n

Here the coefficient of z" is set to be 1 for simplicity.

Type 2: Given a triangular array of random coefficients {agn) en =12,
let

(1.2) p(z) = a2+ 4l 2 +al.
Type 3: Given a sequence of random matrices {A™ 7} let
(1.3) pn(z) = det(2I — AM),

the characteristic polynomial of A" . Here I, the identity matrix, and A™
are square matrices of size n.

2010 Mathematics Subject Classification. Primary: 30C15, 60B10; secondary: 60B20, 60G57,
60F05, 60F15, 60F25.
1
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A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 2

No matter how p, is constructed, we always denote the zeros of p, by Z\",. .., Z™.

Next, for each positive integer k < n, let pgﬂ) be the kth derivative of p,,, and X]’?’k,j =
1,2,...,n — k, be the zeros of p{¥). In particular, when k = 1, XP oo X are
called the critical points of p,. The relation between the zeros and the critical points
of polynomials has been much studied. For example, the Gauss-Lucas theorem asserts
that all critical points of a non-constant polynomial f lie inside the closed convex hull
formed by the zeros of f. It follows by induction that the zeros of f® k < deg f,
also lie inside the same closed convex hull. More refinements of Gauss-Lucas theorem
can be found in [1] and the references therein. A recent paper [2| also discussed some
related results and examples.

On the other hand, R. Pemantle and I. Rivin initiated a probabilistic study on the
limit of the critical points of random polynomials of Type 1. Consider the following
probability measures:

n n—k
1 1
_ - (k) _
(1.4) fn = jEl (SZ](n), and ' = jgl §X;;.,k, 1<k<n,

where 0, is the Dirac measure concentrated on z. u, and ,u%k) are the empirical mea-

sures associated with the zeros {ZJ(-n) 7, and {Xjnk }:1’“, respectively. R. Pemantle
and I. Rivin ([3]) showed that, if Z](-") = Zj and {Z;}32, is a sequence of independent
and identically distributed (i.i.d.) random variables governed by a common law v,

) % ) almost surely (a.s.) as n — oo provided v satisfies certain energy

then ,ug
condition. In this paper — means “converges weakly’ or “converges in distribution’.
In the same i.i.d. setting without any further assumption on the probability law v,
Z. Kabluchko (|4]|) proved in great generality that u%l) < v in probability as n — oo.
For the case of higher order derivatives, in the i.i.d. setting, if the probability mea-
sure v is supported on the unit circle in C, P. L. Cheung et. al. (|5]) showed that
,u%k) v as. as n — oo. Similar results for the zeros of the generalized derivatives
of polynomials are also obtained in [5].

To state a result of Type 2 polynomials, recall that a polynomial is called a Kac poly-

nomial ([6]) if it has the form ijzj, where {&;}22, is a sequence of non-degenerate
=0

i.i.d. random variables. Furthermore, given a sequence of deterministic complex

numbers {w;}52,, a polynomial of the form ijwjzj is called a Littlewood-Offord
=0

random polynomial. Clearly, any kth derivative of a Kac polynomial is a Littlewood-

Offord random polynomial. Z. Kabluchko and D. Zaporozhets ([6] and Theorem 14 of

[1]) proved that both sequences of the empirical measures {u,} and {u,(lk)} converge

weakly to the uniform distribution on the unit circle of C centered at the origin in

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 3

probability as n — oo, provided that E[log(1l + |£|)] < oo. See [6] for the explicit
statements of the theorems and examples.

Under various settings and assumptions, the eigenvalue statistics of random ma-
trices/sample covariance matrices exhibits various interesting and important limit
behavious, for example the circle law, semicircle law, Marcenko-Pastur law, central
limit theorem, large deviations, and so on. See |7] and [19] for a systematic introduc-
tion. To name a result related to our work, consider a sequence of random Hermitian
matrices {A™}> | with p, its characteristic polynomial. S. O’Rourke ([1]) showed

that the Lévy distance between pu, and ,u,(ll) tends to zero almost surely as n — oo.
This observation implies that a.s. {m(ll)} converges weakly to the same semicircle law

as {it, } does. Such phenomenon that { MS)} converges weakly to the same law as that
of {pn} (at some mode of convergence) was further demonstrated for several compact
classical matrix groups by S. O’Rourke in the same paper. Check [1] (theorem 6,
corollary 7, theorem 9, and remark 10) for explicit statements and references therein.
Here we merely point out that all the limit laws of the eigenvalue statistics of the
matrix models considered are compactly supported in C.

In view of the fact that all the results concerning the relation between {u,} and

{,u,(f)} reviewed above are of the type of law of large numbers, it is natural to ask
how about other types of limit theorem? The goal of this paper is to show that if
certain limit property, for example law of large numbers, central 1imit theorem7 law
of iterated logarithm, and so on, holds for the linear statistics of {Z "y (see below
=
_, satisfy some mild conditions which we now

for the precise statement), then the same limit property passes to that of {Xr-l’k

n

for any k, provided the zeros {Zj(n
state.

Denote by Sz the imaginary part of a complex number z.

A1. There exists a non-negative constant Cy > 0 independent of n such that

(1.5) sup max |\sZ | <Cp as.

neN 1<j<n

That is, the i 1mag1nary parts of {Z } are uniformly bounded with probablhty one

Since every zero of pn lies inside the closed convex hull of the zeros of pn by
Gauss-Lucas theorem, we know by induction that

(1.6) Sup max max ]\ank\ <Cp as.
neN 1<k<n 1<j<n—k

When the zeros are real numbers, we put Cy = 0.

n—oo

Recall that p,, — v is equivalent to lim [ fdu, = hm —Zf(ZJ(”)) = /fdu
for each bounded continuous function f. It is therefore quite common to study such

sums (namely, linear statistics) for various categories of test functions. [9], [10], [11],
[12], and [13] are a few examples. In particular, the issue of regularity conditions for

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 4

the test functions is discussed in [14]| and [15]. In this paper we restrict ourselves to

regular test functions f such that f, f/ € L, f exists and f(x ff e dt, and
(1.7) / ()| dt < oo,

R
where i = \/— f f f(u)e™™ du is the Fourier transform of f, and Cj is the

same absolute constant appeared in (1.5).

To adapt to the different scalings in various limit theorems, we consider different
sequences of positive numbers for different linear statistics to be defined later. Below
we list three groups of assumptions to be used in the three main theorems of this
paper, respectively.

A2. There exists a sequence of positive numbers {a, }5°, such that

(1.8) lim a, = oo,
n—o0
(1.9) lim e = o] 0, for each fixed k < n — 1,
n—00 Qp—kAp—k—1
%
(1.10) lim sup ! =0 a.s. for each fixed k < n.
n—00 <<y | Op—k

A3. There exists a sequence of positive numbers {b,}°°, such that

(1.11) lim b, = oo,

n—oo

. |bn k — n k— 1|
1.12 |

Z\Z

A
(1.13) lim sup {u} =0 a.s. for each fixed k < n.

Nn—00 1<j<n bnfk

=0 a.s. for each fixed k <n —1,

A4. There exist two sequences of positive numbers {a,}>2; and {b,}>2; such that

(1.14)  lim a, = lim b, = oo,

n—oo n—oo

(1.15)  lim ~ [0k = On-p1|
. n—00 Ap—kQp—k—1

=0, for each fixed k <n — 1,

Z!Z

Z"
(1.17)  lim sup {@} =0 a.s. for each fixed k < n.

n—=00 1< j<n p—cOr— i,

bn n
(1.16)  lim bt = bu—re-1]

=0 a.s. for each fixed k <n —1,
n—=00 (bp—f— lbn kbn k—1

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS )

Now we are ready to introduce the key objects that we want to study. Consider
the following three linear statistics associated with {ZJ(")}

L) = —[£(27) +-+ 1 (2]

(n)
Loalf) = f(Zb )+- ( )
(n) (n)
() ()

L - =
na(f) o
and the three linear statistics associated with {X ;-L’k}
1

L = — (&) ++r(xh)].

Qp—f

n,k n,k
L = f(fl >++f()b(’“)

n—k n—k
®op 1L xph X
- [ s (2]

It is also necessary to consider the centered (mean zero) linear statistics

Loo(f) = Luo(f) = ELug(£), L) = LE(F) —ELLY)(H. €=1,2,3.

For example, L, (f) with a,, = n and L, (f) with a,, = v/n play the typical roles
in law of large numbers and central limit theorem, respectively. In the random matrix
models, one studies L, 3 with a, = n,b, = y/n for law of large numbers results. In
these cases A2 and A4 are valid obviously.

)

Theorem 1. Let the random zeros {Z}n)}?zl and the sequence {a,} of positive num-
bers be given as above such that they satisfy the assumptions A1 and A2. If the linear
statistics Ly 1(f) has a limit as n — oo at some mode of convergence, then, for each
k < n, the linear statistics Lﬁf}(f) converges to the same limit at the same mode of

convergence. Similar statement holds for L, 1(f) and E,(fi(f)

Theorem 2. Let the random zeros {Zj(n ", and the sequence {b,} of positive num-
bers be given as above such that they satisfy the assumptions A1 and A3. If the linear
statistics Ly o(f) converges weakly to some probability law v = vy as n — oo, then

Z;k%(f) = vy for each fized k < n.

Theorem 3. Let the random zeros {Z ", and the sequences {an} and {b,} of
positive numbers be given as above such that they satisfy the assumptions A1 and A4.
If the linear statistics L, 3(f) has a limit as n — oo at some mode of convergence,

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 6

then, for each k < n, the linear statistics Lff%(f) converges to the same limit at the

same mode of convergence. Similar statement holds for L,3(f) and I_Jik%(f)

Remark 1. Consider the Type 1 random polynomials with Z](.n) = Z; and {Z;} being
an i.i.d. sequence. In this case the uniform condition (1.10) in A2 can be weakened
to
i 1211+ 12
im

n—00 Ay 1. T

=0 a.s. for each fixed k£ < n.

Remark 2. Again consider the Type 1 random polynomials with Zj(") = Z; and {Z;}
being an i.i.d. sequence. This is the setting studied in [3], [4], and [5]. Note that
our Theorem 1 establishes, in addition to law of large numbers result, also central
limit theorem, law of iterated logarithm, and so on, for the linear statistics of {Xjnk}
However, Theorem 2 is not as interesting since it does not include the central limit
theorem of random matrix models. This is because the size of the zeros Z ](-”) is of order
v/n = by, and therefore the conditions (1.12) and (1.13) would not hold. Reasonable
condition(s) should involve the centered quantities.

In Section 2 we establish a comparison identity. It is elementary, and yet crucial
to our results. In Section 3 we prove three theorems and make some final remarks.

2. A COMPARISON IDENTITY

First we state (with some modifications) a theorem of Cheung and Ng ([16]) which
is the starting point of our argument.

Proposition 4 (Theorem 1.1 of [16]). The set of all critical points of pn(z) =
[l (z — 2k),n > 2, is the same as the set of all eigenvalues of the (n —1) X (n —1
matriz M, _1 :

1
(21) Mn—l = Dn—l + E (len—l - Dn—l) Jn—la
where
z 0 --- 0 11 1
0 25 --- 0 11 --- 1
(22) Dn,1 = . . . . s Jnfl = L., . )
0 0 --- 2z, 11 --- 1

and I,,_1 is the identity matrix of size n — 1.

Denote by Tr M the trace of a square matrix M. Our results rely on the following
observation.

Lemma 5. Let M,,_1 and D,,_1 be defined as in Proposition 2 and i = /—1. Then

(2.3) Tr (eitM"_l) —Tr (eitD”—l) — Zc;;_lTr (jn—l eitDn—1> :

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS s

! Sn—l
Cno1 = cnl(t)—/ exp | iu du,
0 n

gn—l = (51— 2) 4+ -+ (21— 2,), and
21 — 22 0 0

- 0 21— 23 - 0
Jn—l = . 1. ’ . . Jn—l-

where

0 0 cee 21— Zn

Proof. Tt can be proved straightforwardly by Taylor expansions. However, to derive
the constant ¢, in a more natural way, we first use the Duhamel formula

t
elbitl2)t _ Lt / eLl(f—T)LQG(LH-M)T dr
0

with Ly = iD,y and Ly + Ly = iM,_y. In fact, Ly = £ Jo_1. Since Tr(eAtB) =
Tr(e? eB) by Tr(AB) = Tr(BA), the left hand side of (2.3) equals

. t )
(24) i/\ Tr <Jn_le’itDn—1 e(iujn_l)/n) du
nJo

One can show by induction that J* | = S¥=1J | k € N. After using this fact in

the Taylor expansion of elwin-1)/n he integrand within the integral of (2.4) can be
simplified to

(2.5) Tr (jn_leitDn_1> iuSn1)/n.
This completes the proof. 0

Remark 3. The D,_; appeared in [16] is a diagonal matrix with diagonal entries
{z1,...,2n_1}, while we choose a different one given in (2.2) by the symmetry among
the zeros. The M,,_; in (2.1) is modified accordingly.

Remark 4. Observe that the terms in (2.5) can be expressed in a more symmetric
way:

S, 1%
(26) 1 = z1— h’
n n
1./~ . et et
(27) ~Tr <Jn_1eztDn_1> = (Z]l ) N ijl J '
n n n

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 8
Suppose that {z;}"_, satisfies the bound Jnax 1Sz < Cy, then it is easy get that
SJsn

23) ()] < Sl

n
< Lol (|Z1| + M) '
n

When all zeros are real, Cy = 0 and one simply gets |c,—1(t)| < [¢t|. These are used in
the proofs of three theorems.

(2.9) %Tr <J~n_16itD"*1>

3. PROOFS AND CONCLUDING REMARKS
We now prove Theorem 1.
Proof. Consider the case of L, (f) and Lgll%(f) (k = 1). To prove the theorem in
(

this case, it suffices to show that L, ;(f) — Lnl)l(f) — 0 a.s. as n — oo. Write
L,i(f) — LW (f) = Wia + Wi, 2, where

n,1l
s = L) v )] g () 1)
(n) .
e )
and
Wa = [ (Z7) oo £ (200)] = = [F (G oo £ (3602)].
Clearly

1/ lloc i nlan, 1 — an||| fll
G, Ap—10p

(Wil < —0 a.s.

by (1.8) and (1.9) of A2. Next we apply Lemma 3 with Z](-”) inplaceof z;,5 =1,...,n,
to obtain that

W,y = anl_l / £(8) [T (€#Po=1) — T (1]
— al_ /f(t)cn_;(t)Tr (jn,leitD"‘l) dt.

Since we assume A1, the estimates (2.8) and (2.9) in Remark 4 can be used to yield
that

n n (n)
! ; 2" X514

3.1 W, o < — )| e3¢l gt 1 J J .
(3.1) Waal < 50 (/ F(O)]e e

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 9

By the regularity condition (1.7) together with (1.8) and (1.10) of A2, we conclude
that [, 2| — 0 a.s. when n — oo.

For k > 1 we decompose L, 1(f) — L,(f}(f)—Lnyl(f) ( )+Z JH)( Yo
Lff)l(f) and need to show that each |L,’ 2 (f) — Lff;lﬂ)( )] — 0 a.s. We simply follow
the same strategy as above. Two facts can be useful when estimating the difference
between the traces of two matrices. First one is the basic relation between roots and

coefficients: i B
ZW 4z X X

n—k
= k<
n n—k "
The second relation can be found in [17| and [18] :
X XS] X G2 e 2
n—k - - n—1 n '

The rest is easy and is omitted. When demonstrating the weak convergence of Eﬁf{
from that of I_Jml, the converging together lemma should be applied to complete the
proof. O

The proofs of Theorem 2 and Theorem 3 are similar to that of Theorem 1. A mean
value inequality and the boundedness of |f’| can justify the transference of the scales
from b, to b,_,_1. When estimating the terms like (3.1), the uniform condition
(1.13) in A3 and/or (1.16) in A4 would be helpful.

Now prove Theorem 2.

Proof. Again, since

B Z(n) n Z(”) Z(n)
By L : L)~ Bf())
n—1
an X’I’L7].
Ef(75)),

n—l

where (again) first two summation terms vanishes by A3 and f, f' € L. The last
two summation terms (again) are equal to

/f(t) [Tr (eitD"*/b"*) —Tr (eitM"”/b”*)} —-E [Tr (eitD”*l/b"”) — Tr (eitM"*/b”*)} dt,
hence it is bounded by

o ([ 17w ) (220, B2 (127, 2 2]
2Co b1 nbp1 b1 nb,_1

which also vanishes by A1 and A3. U

Finally prove Theorem 3.

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 10

Proof. Similarly

n,3:a_
"k

21 g S e
( bn an 1 Z f b an 1 an 1 Z f bn—
k=2 k=2 k=1

where (again) first two summation terms vanishes by A4 and f, f’ € L*>°. The last
two summation terms (again) are equal to

[ [ (Pt i (e

hence it is bounded by

n n (n)

! ; 2" 512"
- e300l gy 1 J J
2a,1Cy </|f( )|€ bn—1 * nby_1

which also vanishes by A1 and A4. O

Ap—1

Remark 5. In the proofs of the theorems we deal with the strongest mode of conver-
gence, namely the almost sure convergence, of L, ((f) — L,(f;(f) — 0,0 =1,2,3. If
the original L, ,(f),¢ = 1,3, converges at a weaker mode, an alternative argument
using weaker estimates should be considered. Consequently, it is conceivable that the
assumptions weaker than A1 and A2 (or A4) might be sufficient for the theorems to
hold, and the regularity conditions on the test functions used in the linear statistics
might also be relaxed.

Remark 6. One can show that if the empirical measure associated with the zeros of
Pn, under appropriate scaling, obeys a large deviations principle, so does the empirical

measure associated with the zeros of p{) for each k. This is treated elsewhere ([21]).

4. LARGE DEVIATIONS

But what can we say if we only have large deviation principle?

Observe that: if {2}y, {¥n}pey € R and lim 2, — y, = 0, then
n—o0

liminfz,, = liminfy,,

n—oo n—oo
and
lim supx,, = lim supy,,.
n—oo n—oo
So if

lim Pr{X, € A} —Pr{Y, € A} =0

doi:10.6342/NTU201700594



A UNIVERSALITY OF CRITICAL POINTS OF POLYNOMIALS 11

for any A is Borel measurable and {X,}, . satisfy large deviation principle, then
{Yy},.en also satisfy large deivation principle with the same rate function.

Obviously, the total variation

sup| Pr{X, € A} —Pr{Y, € A}|
A

vanishes as n — oo implies

lim Pr{X, € A} —Pr{Y, € A} =0.

n—oo
Nevertheless, even
lim X, —-Y,=0

n—o0
almost surely does not imply the total variation vanishes as n — oco. One way to
guarantee is that

Lemma 6. If there is another measure m such that Pr{X, € A} = [f.dm and
A

Pr{Y, € A} = [g,dm for all A is measurable, where f,, g, are integrable w.r.t.
A

measure m, then
lim sup|Pr{X,, € A} —Pr{Y, € A}| =0« lim /|fn — gndm = 0.
n—oo A n—oo

Proof: One side is trivial since

/!fn ~ galdm > /|fn ~ galdm > \/fn ~ gudm),
A A

for any A is measurable. Conversely, because

sup| Pr{X, € A}—Pr{Y, € A}| = max / frn — gndm, —/ fn—gndm p — 0
A
{fn—gn20} {fn—gn<0}

as n — 0o, we have

/lfn_gn’dm: / Jn — gndm _/ fn— gndm — 0
{fn—gn>0} {fn—gn<0}

as n — o0o. Done.

This is the end of our main results.

doi:10.6342/NTU201700594
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12
5. APPENDIX
Proof of Proposition 4: Since (here p,(2) = (2 — Z1) -+ (2 — Z,,))
_w) ¢
pn(w) = w - Z;
if w is a critical point of p, and w is not equal to any of roots Z;. We have
1 — 1
w— 2, Z; —w’
J=1
S
= ZJ —w =
Conversely this observation reveals that if a number A ¢ {Z;}"") " and Z 2 Z” =n,
then A # Z,, and p/,(A\) = 0.
First we would show any critical point w of p,, w ¢ {Z; }] |» is an eigenvalue of M
with eigenvector
Zl—Zn . anl_Zn T
n(Zi—w)’ ' n(Zp—1—w)
via
Z1—Tm Z1(Z1—Zn) 1
n(Z1—w) n(Z1—w) 1 n—1 Zj Zn—
M| : D v
Zn-1—Zn Zp-1(Zn—1—Zn) [ Zi—w 1
n(Zp—1—w) n(Zp—1—w)
Z1(Z1—Zn) Zl(Zl—Zn) Zl(Zl_Zn)
n(Z1—w) - a0 n(Z1—w)
: : =w :
Zn—l(Zn—I*Zn) anl(Zn—lfzn) anl(Zn—lfzn)
n(Zp—1—w) n n(Znp—1—w)

If w is equal to one of roots saying Z;, then w = Z;, = Z;, © # j. In particular if i = n,
then w = Z,, is an eigenvalue of M with eigenvector

e+ (1, e 1)

doi:10.6342/NTU201700594
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by showing
1 A Zy — Ly, 1
Ml2|=|27 |- 0 = Z, | 2],
1 Zn—l Zn—l - Zn 1

where ¢; is the standard basis, i.e. , 2 only occurs at 4" component.

Forw=Z; = Zj, 4,7 <n—1, we have
M(e; —ej) = D(e; —e;) = w(e; — ¢€;).

Therefore

{zeC | p,(z) =0} C o(M)
Conversely if A € o(M) with eigenvector (vl, e ,vn_l)T, ie.

(Zl - )‘)Ul 1 n—1 Zl - Zn
: =—(Q_v) :
(Zn—l - )\)'Un—l i=1 Zn—l - Zn
n—1
n—1 .

If J; v; = 0, then at least two of {Uj}jzl’ saying v; and vo, are non-zero. Hence

n—1
AN=2Zy =12y Nowassume » v; #0. f A=2;, j <n—1,then Z, =Z; = \. If
j=1
A ¢ {Zj};.:ll, then

UV . Zj — Zn

nf o Cn(Z; =)
i=1

Summing up all j from 1 to n — 1 we have
“~Zj—Z,

as a result,
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Adopt the proof above we have

n

Lemma 7 (Gauss-Lucas Theorem). Again p,(z) =[] (v — Zy), we have
k=1

{zeC | p),(2) =0} C Conv{Z};_, .
Proof: Let w € {zeC | pl,(z) =0} \ {Z},_, (otherwise it is trivial), then

n n =

0 - Pa(w) -3 L w7
pn(w) jZl w — Z] j:l |w - Zj|27
so we conclude that .
Z,
; waéj\z
w=""— € Conv{Z}}_, .
1
2 P
j=1 !

From above we can have

Proposition 8. If {Z,},_, C LP, p > 1, then
{2¢C | p(z) =0} C I
Proof: Let w € {zeC | p,(z) = 0} \ {Zx},_, (otherwise it is trivial), then (through
Jensen’s inequality)
n Zj

Elwf =E| Y 25 < swp {E|Z} < ox.
- 1<k<n

The ideas below originally follow from [19]: First it is easy to see that

Proposition 9 (|19], Lemma 2.2 and Lemma 2.3). If every coefficients ay of a random
polynomial > apx® are in LP, p > 1, then the polynomial is continuous in LP, i.e.
k=0

n n

lim E| E aprt— E aprhP =0
T—T0

k=0 k=0
and hence continuous in probability.

We also observe that

doi:10.6342/NTU201700594
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Proposition 10. Let p,(z) :==>_ axz”® be a random polynomial, then
k=0

B
B0(9) = mle) | o (a(o): 0 < all =B | [ (oo [ {anliy |
hence p,(z) is a sub- or super-martingale on [a,b] C R if pl () > or <0 on [a,b)].

Nevertheless we still need to answer a fundamental question: are roots of

n
- k
pulz) = E ax
k=0
measurable if complex coefficients {a};_, are measurable?

To answer the question, we need measurable selection Theorem due to Kuratowski
and Ryll-Nardzewski, and the proof presented here follows from [20].

Theorem 11 ([20], Theorem 6.9.3). Let (2, X)be a measurable space, X be a Polish
space and F : Q — X be a mapping with values in the family of non-empty closed
subsets of X. If for every open subset U C X, we have

FU)={weQ:Fw)NG +#¢} €.
Then F has a X—measurable selection [ : Q) — X such that
fw)e F(w),VweQ.
Proof: Let {,},.y be a countable dense subset of X. Define fo: Q — {z,}, .y as
fo(w) =z,
where
ji=inf{n e N: F(w)N B (z,,1) # ¢}.
Hence fj is X—measurable since

B . j—1 ~
fo'{wj} = F(B(z;,1))\ U F(B(zm,1)) € .
Now we construct inductively measurable mappings fj : @ — {x,}, . such that
d(fr (W), fer1 (w)) <275
and

d(fi(w),F(w) <27".

Suppose f is already constructed. Fix k, then for all disjoint f, ' {z;},i € N,
define

Jrgr fk;_l {zi} — {xTZ}nGN

doi:10.6342/NTU201700594
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as
fr1 (W) =z,
where
jr=inf{n e N: (F(w)NB (2;,27")) N B (2,,27"") # ¢}
since F (w) N B (;,27%) # ¢, Yw € fi7 {z:}.
So
d(fr1 (W), F () <2751
and
d(fr (W), frpr (W) <277 42771 < o7k
As a result, we have a X —measurable mapping

Jim fi (w) = f(w) € F(w),
since { fi (W)} is Cauchy and ¢ # F' (w) is closed.

Now we are able to answer the question.

Theorem 12 ([19], Theorem 2.2). All roots of

n
() ::Z apx”
k=0

are X—measurable if complex coefficients {ay};_, are S—measurable.

Proof: Let F (w) := p,! {0} C C, which is closed and non-empty in C by Funda-
mental Theorem of Algebra, and let D be countable dense subset of C.
Observe that for every open subset G C X,

F(G)" = U {w € Q:py(2) € {0} = U A,
ie.,

weA,reqG @)Zak(w)xk%o.
k=0
Fix such w € A, and = € G, then

JE€GND3)  ap(w)d e {0}
k=0

since p,(w) ™! ({0}°) is open (then 7 is in a neighbourhood of x contained in p,(w)~! ({0}°)

-1
n

such that > aj, (w) 7% #0) and 7 € D C C is dense.
k=0

doi:10.6342/NTU201700594
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Hence
F(Gf=UA,= U A;ex.

zelG zeGND

Applying above measurable selection theorem, we have

Zy (w) € p," {0}

is Y—measurable.
Take

L pn<x>
Pr1 (@) = x— 7

(we may assume a,, # 0 a.s.) and then the result follows by backward induction.
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