Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25839
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorKuo-Hsin Changen
dc.contributor.author張國馨zh_TW
dc.date.accessioned2021-06-08T06:32:50Z-
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-22
dc.identifier.citationAgag, T.; Koga, T.; Takeochi, T., Polymer, 42, 3399 (2001)
Ajayan, P. M.; Schadler N.S.; Braun P.V., “Nanocomposite Science and Technology“, Wiley-VCH (2003)
Ambrozic, M.; Dakskobler, A.; Valant, M., The European Physical Journal Applied Physics, 30, 23 (2005)
Ash, B. J.; Stone, J.; Rogers D. F., Schadler, L. S.; Sirgel, R. W.; Benicewicz, B. C.; Apple, T., MRS Symp. Proc., 661, KK2.10.1 (2001)
Avella, M.; Errico, M. E.; Martuscelli, E., Nano lett., 1, 213 (2001)
Bischoff, B. L.; Anderson, M. A., Chem. Mater., 7 1772 (1995)
Becker, C.; Krug, H.; Schmidt, H., SPIE, 3469, 88 (1998)
Boyle, T. J.; Tyner, R. P.; Alam, T. M.; Scott, B. L.; Ziller, J. W.; Potter, B. G., Jr. J. Am. Chem. Soc., 121, 12104 (1999)
Brinker, C. J.; Scherer, G.W.; “Sol-gel science“, Academic Press, Inc., San Diego, 1990
Carmona, F.; Prudhon, P.; Barreau, F.; Solid State Communications, 51, 255 (1984)
Chen, W. C.; Lee, L. H.; Chen, B. F. ; Yen, C. T., J. Mater. Chem., 12, 3644 (2002)
Cogan, S. F.; Nguyen N. M.; Perrotti S. J.; Rauh R. D.; J. Appl. Phys. 66, 3 (1989)
Cozzoli, P. D.; Kornowski, A. ; Weller, H., J. Am. Chem. Soc., 125, 14539 (2003).
Doeuff, S. ; Henry, M.; Sanchez, C.; Livage, J., J. Non-Cryst. Solids, 89, 206 (1987)
Efros, A. L.; Shklovskii, B.; Phys. Status Solidi., 76, 475 (1976)
Iijima, S., Nature, 354, 56 (1991)
Ivanov, D. A.; Jonas, A. M.; Macromolecules, 31, 4546 (1998)
Kominami, H.; Muratami, S.; Kato, J.; Kera, Y.; Ohtani, B., J. Phys. Chem. B, 106, 10501 (2002),
Kramer, E. J., Nature, 437, 824-825 (2005)
Krishnamoorti, R.; Vaia, R. A., ”Polymer Nanocomposites Synthesis, Characterization, and Modeling”, American Chemical Society Symposium Series, Washington, DC (2002)
Krishnamoorti, R.; Vaia, R. A.; Giannelis,E. P., Chem. Mater., 8, 1728 (1996)
Lee, H. H.; Chou, K. S.; Shih, Z. W., International Journal of Adhesion & Adhesives. 25, 437 (2005),
Li, Y.; Sui, M.; Ding, Y.; Zhang, G.; Zhuang, J.; Wang, C., Adv. Mater., 12, 818 (2000)
Lide, D. R.; “Handbook of Chemistry and Physics”, 71st ed., 4, CRC Press. (1991)
Lin, J.; Lin, Y.; Liu, P., Meziani, J. M.,Allard, L. F., Sun, Y. P. J. Am. Chem. Soc., 124, 11514 (2002)
McMaster, T. J.; Hobbs, J. K.; Barham, P. J.; Miles, M. J., Probe Microscopy, 1, 43 (1997)
Messersmith, P.B.; Giannelis E. P., Chem. Mater., 6, 1719 (1994)
Nabok, A.,“Organic and inorganic nanostructures” Artech House, Inc., Boston (2005)
Niederberger, M.; Bartl, M. H.; Stucky, G. Chem. Mater., 14, 4364 (2002)
Oberdisse, J., Soft mater., 2, 29 (2006)
Ogoshi T.; Itoh H.; Kim K. M.; Chujo Y., Macromolecules, 35, 334 (2002)
Okamoto, M.; Morita, H.; Taguchi, H.; Kim, Y. H.; Kotaka, T., Tateyama, H., Polymer, 41, 3887 (2000)
O’ Regan, B.; Gratzel, M., Nature, 353, 737 (1991)
Oubaha, M.; Smaihi, M.; Etienne, P.; Coudray, P.; Moreau, P., J. Non-Cryst. Solids, 318, 305 (2003)
Rogers, H. G.; Gaudiana, R. A.; Hollinsed, W.C.; Kalyanaraman, P. S.; Manello, J. S.; McGowan C.; Minns, R. A.; Sahatjian, R., Macromolecules, 18, 1058 (1985)
Russ, J. C., The image processing handbook, 3rd ed., CRC Press (1999)
Sanchez, C.; Livage, J.; Henry, M.; Babonneau, F., J. Non-Cryst. Solids, 100, 65, (1988)
Sanchez, C.; Livage, J., New J. Chem., 14, 513 (1990)
Skoog, D. A., Holler, F. J., Nieman, T. A., “Principles of instrumental analysis”, 5th edition, Thomson Learning, Inc. (1998)
Sternstein, S. S.; Zhu, A. J., Macromolecules, 35, 7262 (2002)
Verevkina, O. B.; Kulkova, N. V.; Politova, E. D.; Shevchuk, Y. A., Colloid, 65, 226 (2003)
Wu, K. H.; Chang, T. C.; Yang, J. C.; Chen, H. B., Appl. Polym. Sci., 79, 965 (2001)
Xiao, P.; Xiao, M.; Gong, K., Polymer, 42, 4813 (2001)
Xu, J.; Aubonnet, S.; Barry, H. F.; MacCraith B. D., Materials Letters, 57, 4276 (2003)
Yoldas, B. E., J. Mater. Sci., 21, 1087 (1986)
Yoshida, M.; Prasad, P. N., Chem. Mater., 8, 235 (1996)
Yoshida, M.; Lal, M.; Deepak Kumar, N.; Prasad, P. N., J. Mater. Sci, 32, 4047 (1997)
Youngs, I. J., J. Phys. D: Appl. Phys., 35, 3127 (2002)
Zhu, Y.; Shi, J.; Zhang, Z.; Zhang, C.; Zhang, X. Anal. Chem , 74, 120 (2002)
林滄浪、鄭有舜,”材料分析儀器-小角度X光散射儀”,行政院國家科學委員會精密儀器發展中心出版,1998
柯清水,”新世紀化工化學大辭典”,正文書局,2000
傅雅卿,”高折射率環氧樹脂之合成及其物性研究”,台灣大學材料科學與工程學研究所碩士論文,2001
高宜孝,”有機無機混成光敏感性光學材料”,台灣大學材料科學與工程學研究所碩士論文,2004
張光偉, ”有機-無機混成材料極其應用趨勢”, 化工資訊,3,36,1998
張佐光,”功能複合材料”,曉園出版社,2006
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25839-
dc.description.abstract由於高折射率材料有廣泛的應用性,如光波導材料(Optical waveguide)與光學鏡片等,因此我們製備高折射率材料。
為了達到奈米複合材料之折射率大於1.6的目標,本論文分成四個部分:首先,藉由改變不同的高分子與二氧化矽之重量比以了解折射率隨著重量組成而改變的情形。結果發現材料的折射率會隨著二氧化矽含量的增加而下降。這是由於二氧化矽本身的折射率較低,因此製備成奈米複合材料後導致整體折射率降低。雖然在此階段中無法達成高折射率的目標,但是經由材料的熱性質以及機械性質的分析後發現到一個很有趣的現象,就是當二氧化矽含量達40 wt%後,這兩種物性皆呈現非線性的上升。因此嘗試藉由原子力顯微鏡(AFM)觀察材料表面型態(surface morphology),希望能藉由微觀尺度來探討表面型態與材料物性之關連性。結果亦發現當二氧化矽含量達40 wt%後,奈米粒子在高分子母體中呈現有序規則排列,這樣的網狀(network)結構就侷限住高分子的移動,因此造成材料的Tg、硬度以及Young’s modulus皆呈現非線性上升。由此可知二氧化矽含量40 wt% 為此系統之percolation threshold。
此外。我們以AFM搭配臨場(in-situ)加熱附件並藉由影像分析軟體找出不同無機含量下混成材料的表面玻璃轉移溫度(Tg, surface),將結果與DSC及TMA所得Tg比較。我們發現當二氧化矽奈米粒子含量達40 wt%後,DSC與TMA皆無法測得其Tg,但是仍然可由臨場加熱AFM測得。這是由於AFM探針較TMA小許多,因此可偵測出材料表面細微的變化。
在第二個部分中,以外層包覆矽氧烷類之非晶型(amorphous)二氧化鈦與EOBDA (ethoxylated (3) bisphenol A diacrylate) 製備出奈米複合材料,其折射率隨著二氧化鈦量的增加而上升。當二氧化鈦含量為15.6 wt%時,在波長為633 nm情況下之折射率可由1.5648增加至1.6161;並且於850 nm、1310 nm與1550 nm的光穿透度皆達93%以上。
在第三個部分中,以油酸(oleic acid)進行表面改質所製備的銳鈦型(anatase)二氧化鈦與BMAEP(Bis[2-(methacryloyloxy)ethyl] phosphate)及EOBDA壓克力單體混合後,製備出奈米複合材料,當二氧化鈦含量達7.9 wt%時,折射率由1.5443上升到1.5553,上升幅度並不明顯。這是由於二氧化鈦奈米粒子表面的油酸含量很高,以致於折射率上升的幅度受限。
在最後一個部分中,以醋酸表面改質之銳鈦型二氧化鈦奈米複合材料與BMAEP壓克力單體混合後,製備出奈米複合材料。當銳鈦型二氧化鈦固含量達35.4 wt%後,折射率即由1.5020上升至1.6071。此外,在波長為850 nm、1310 nm與1550 nm下的光穿透度分別為87.4 %、94.3 %及94.0 % 。
zh_TW
dc.description.abstractDue to the wide application of high refractive index materials (e.g. optical waveguide and optical lenses, etc.), we synthesized high refractive index materials.
In order to reach the goal of high refractive index (RI) 1.6 at 633 nm, we tried to synthesize four kinds of nanocomposites. First, we prepared silica-polymer nanocomposites. By changing the silica content, we can realize how the silica content influences the RI. However, we found that the RI decreased when the silica content increased. It is because the RI of silica is lower than that of the polymer matrix. In spite of the fact that we can’t reach the goal by this method, we found an interesting phenomenon after analyzing the mechanical and thermal properties of the nanocomposites. We found that both of the mechanical and thermal properties increased nonlinearly when the silica content reached 40 wt%. In order to explain this nonlinear phenomenon, we used atomic force microscopy (AFM) to obtain the surface morphology of nanocomposites and tried to find the correlation between their physical properties and surface morphology. We found that the silica nanoparticles in the polymer matrix became self assembled when the silica content reached 40wt%. The network formation of the silica nanoparticles confines the moving of polymer and causes the increasing of their physical properties nonlinearly. Accord to these results, we made the conclusion that the percolation threshold of this hybrid system is 40 wt% of the silica content.
In addition, we used AFM with the thermal accessory to find in-situ nanocomposites surface morphology and then used image processing software to know specifically the temperature influence on its topography. Thus we obtained the nano scale Tg and made comparison with the macro scale Tg, which was obtained from DSC and TMA. From the results, we found that both DSC and TMA can’t find their Tg when the silica content reaches 40%. However, we can still find that it is increasing by AFM. It is because the AFM probe is much smaller than TMA probe, so we can still find their Tg.
In part two, we synthesized an amorphous TiO2 nanoparticle colloid solution and mixed it with EOBDA (ethoxylated (3) bisphenol A diacrylate) monomers after surface modification of TiO2 nanoparticles by the coupling agent (3-(trimethoxysilyl) propyl methacrylate, MPS), then we used the resulting materials that were the product of the above stated reactions to fabricate nanocomposites. We found that RI increased from 1.5648 (EOBDA) to 1.6161 after adding 15.6 wt% of titania and the transparency in the wavelength of 850 nm, 1310 nm and 1550 nm were above 93%.
In part three, we synthesized of oleic acid-capped anatase TiO2 nanocrystals, then mixed them with BMAEP (Bis[2-(methacryloyloxy) ethyl] phosphate) and EOBDA monomers to fabricate nanocomposites. We found that RI increased from 1.5443 (BMAEP/EOBDA mixing) to 1.5553 after adding 7.9 wt% of titania. It is clear that the range of RI increasing is not as high as it in part two. It is because there is too much surfactant around titania to increase the RI using pure TiO2.
Finally, we used carboxylic acid-capped anatase TiO2 nanocrystals, and mixed them with BMAEP to fabricate nanocomposites. We found that RI increased from 1.5020 (BMAEP) to 1.6071 after adding 35.4 wt% of titania and the transparency in the wavelength of 850 nm, 1310 nm and 1550 nm to be 87.4 %, 94.3 % and 94.0%, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:32:50Z (GMT). No. of bitstreams: 1
ntu-95-R93527009-1.pdf: 1732294 bytes, checksum: d284b35f0d821e03e975fe4194f84654 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要 I
Abstract IV
目錄 VII
圖目錄 XII
表目錄 XV
第一章 引言 1
第二章 文獻回顧 6
2.1高分子複合材料 6
2.1.1 填料 7
2.1.2高折射率奈米複合材料之應用 9
2.1.3界面對於材料物性之影響 11
2.1.4機械性質 14
2.1.5玻璃轉移溫度 15
2.1.6 Percolation 效應 16
2.2原子力顯微鏡 18
2.3小角度X光散射儀(SAXS) 21
2.4溶膠凝膠法 23
2.4.1影響矽酸鹽類進行溶膠凝膠法之變因 25
2.4.2溶膠凝膠法中有機相與無機相之間不同鍵結方式比較 26
2.4.2.1有機相與無機相間無化學鍵結 27
2.4.2.2有機與無機相間以物理作用力結合 27
2.4.2.3有機相與無機相間無化學鍵結 28
2.4.3以溶膠凝膠法製備奈米複合材料之主要結構 29
2.4.3.1高分子矽氧烷修飾結構 29
2.4.3.2半混合式高分子互穿網狀結構 30
2.4.3.3互穿網路結構 31
2.5以溶膠凝膠法製備二氧化鈦奈米粒子 33
2.5.1金屬烷氧化物(metal alkoxides) 34
2.5.2影響鈦烷氧化物進行溶膠凝膠法反應之因子 35
2.5.3鈦烷氧化物之表面改質 37
第三章 實驗 42
3.1 實驗藥品 42
3.2 實驗儀器 45
3.3實驗步驟 47
3.3.1實驗流程圖 47
3.3.1.1二氧化矽-高分子奈米複合材料 47
3.3.1.2非晶型二氧化鈦奈米複合材料 48
3.3.1.3以油酸表面改質之銳鈦型二氧化鈦奈米複合材料 49
3.3.1.4以醋酸進行表面改質之銳鈦型二氧化鈦奈米複合材料 50
3.3.2含二氧化矽-高分子奈米複合材料 51
3.3.2.1二氧化矽-高分子奈米複合材料之製備 51
3.3.3非晶型二氧化鈦奈米複合材料 52
3.3.3.1非晶型二氧化鈦奈米粉體之合成 52
3.3.3.2非晶型二氧化鈦-高分子奈米複合材料製備 54
3.3.4以油酸表面改質之銳鈦型二氧化鈦奈米複合材料 54
3.3.4.1以油酸表面改質之銳鈦型二氧化鈦奈米粉體之合成 54
3.3.4.2以油酸表面改質之銳鈦型二氧化鈦奈米複合材料製備 56
3.3.5以醋酸進行表面改質之銳鈦型二氧化鈦奈米複合材料 57
3.3.5.1以醋酸表面改質之銳鈦型二氧化鈦奈米粉體之合成 57
3.3.5.2以醋酸表面改質之銳鈦型二氧化鈦奈米複合材料製備 59
3.4實驗測試項目與樣品製備 60
3.4.1光學性質分析 60
3.4.2熱性質分析 60
3.4.3機械性質分析 62
第四章 結果與討論 63
4.1二氧化矽-高分子奈米複合材料性質分析 63
4.1.1折射率 (Refractive Index) 63
4.1.2機械性質分析 64
4.1.3熱性質分析 66
4.1.4表面型態分析 68
4.1.5二氧化矽奈米複合材料之表面玻璃轉移溫度分析 71
4.2二氧化鈦奈米複合材料性質分析 75
4.2.1非晶型二氧化鈦奈米複合材料性質分析 75
4.2.1.1折射率(Refractive Index) 75
4.2.1.2光穿透度(Transparency) 78
4.2.1.3熱裂解溫度(Td) 82
4.2.1.4玻璃轉移溫度(Tg) 83
4.2.2以油酸表面改質之銳鈦型二氧化鈦奈米複合材料性質分析84
4.2.2.1以油酸表面改質之銳鈦型二氧化鈦粒子的熱重分析 85
4.2.2.2折射率(Refractive Index) 86
4.2.2.3光穿透度(Transparency) 89
4.2.2.4熱裂解溫度 (Td) 91
4.2.3以醋酸表面改質之銳鈦型二氧化鈦奈米複合材料性質分析92
4.2.3.1折射率(Refractive Index) 92
4.2.3.2光穿透度(Transparency) 94
4.2.3.3熱裂解溫度 (Td) 95
4.2.3.4玻璃轉移溫度(Tg) 96
第五章 結論 98
第六章 建議 101
參考文獻 102

圖 目 錄
Figure 1.1 Filler fraction dependence for the conductivity of conductor–insulator composites 4
Figure 2.1 Schematic of nanoscale fillers 7
Figure 2.2 Schematics of (a) stress vs. strain curve for a typical high modulus fiber, a thermosetting polymer, and the resulting composites, (b) transfer of strain from the matrix to the fiber near the fiber end 13
Figure 2.3 (a) surface area per unit volume vs. particle size for spherical particles that are ideally dispersed, and (b) interparticle distance for spherical particles that are ideally dispersed 14
Figure 2.4 Site percolation on the square lattice, illustrating various cluster sizes (s) for three values of p, the fraction of filled sites 17
Figure 2.5 The atomic force diagram. Set points for the contact and noncontact modes are indicated with dotted lines 20
Figure 2.6 Polymerization behavior of aqueous silica 26
Figure 2.7 Alkoxysilane modified polymer structure 30
Figure 2.8 Semi-IPN structure 31
Figure 2.9 IPN structure 32
Figure 2.10 Molecular structure of Ti(OR)4 precursors 35

Figure 2.11 Hypothesized mechanism for isotropic growth nanocrystals in oleic Acid (-OPri= -CH(CH3)2 and R= OLEA Alkyl Chain) 38
Figure 3.1 Flow diagram of SiO2/ polymer nanocomposite 47
Figure 3.2 Flow diagram of amorphous TiO2/ polymer nanocomposite 48
Figure 3.3 Flow diagram of oleic acid-capped anatase TiO2/ polymer nanocomposite 49
Figure 3.4 Flow diagram of acetic acid-capped anatase TiO2 / polymer nanocomposite 50
Figure 3.5 TEM image of amorphous TiO2 nanoparticles 53
Figure 3.6 XRD patterns of amorphous TiO2 nanoparticles 53
Figure 3.7 TEM image of anatase TiO2 nanocrystals 55
Figure 3.8 Electron diffraction patterns of anatase TiO2 nanocrystal 56
Figure 3.9 Size distributions of anatase TiO2 colloid solution 58
Figure 3.10 XRD patterns of anatase TiO2 nanocrystals 59
Figure 4.1 Refractive index fitting curves of FS series at 633nm 64
Figure 4.2 Hardness of FS series 65
Figure 4.3 Modulus of FS series 65
Figure 4.4 TGA curves of FS series 66
Figure 4.5 TMA curves of FS series 67
Figure 4.6 DSC curves of FS series 67
Figure 4.7 AFM images of FS series 70
Figure 4.8 small angle X-ray scattering (SAXS) spectrum of FS series 71
Figure 4.9 Comparison of TMA and AFM Probe 72
Figure 4.10–(a) Thermal evolution of the area fraction of FS-0 73
Figure 4.10–(b) Thermal evolution of the area fraction of FS-20 73
Figure 4.10–(c) Thermal evolution of the area fraction of FS-40 74
Figure 4.10–(d) Thermal evolution of the area fraction of FS-60 74
Figure 4.11 Refractive index of TA series at 633nm 78
Figure 4.12 UV-vis spectrum of TA series 80
Figure 4.13 Transparency of TA Series in the Wavelength of 850 nm, 1310nm and 1550 nm 80
Figure 4.14 TGA curves of TA series 83
Figure 4.15 DSC curves of TA series 84
Figure 4.16 TGA curves of OLEA-capped TiO2 nanocrystals with different washing times 86
Figure 4.17 Refractive index of TB series at 633nm 89
Figure 4.18 UV-vis spectrum of TB series 90
Figure 4.19 Transparency of TB series in the wavelength of 850 nm, 1310nm and 1550 nm 91
Figure 4.20 TGA curves of TB series 92
Figure 4.21 UV-vis spectrum of TC series 95
Figure 4.22 TGA curves of TC series 96
Figure 4.23 DSC curves of TC series 97

表 目 錄
Table 1.1 Comparisons of optical materials 2
Table 4.1 Chemical compositions of FS series 63
Table 4.2 Tg comparison of FS series (DSC and TMA) 68
Table 4.3 Tg comparison of FS series (DSC, TMA and AFM) 75
Table 4.4 Refractive index list of bulk materials used in TA series 77
Table 4.5 Comparison of theoretical and experimental inorganic content of TA Series 77
Table 4.6 NIR absorption for CH and OH bonding 81
Table 4.7 Refractive index list of bulk materials used in TB series 88
Table 4.8 Comparison of theoretical and experimental refractive index of TB Series 88
Table 4.9 Comparison of theoretical and experimental refractive index of TC Series 94
dc.language.isozh-TW
dc.subject二氧化鈦zh_TW
dc.subject玻璃轉移溫度zh_TW
dc.subject表面型態zh_TW
dc.subject原子力顯微鏡zh_TW
dc.subject溶膠-凝膠法zh_TW
dc.subject二氧化矽zh_TW
dc.subject有機/無機奈米複合材料zh_TW
dc.subject折射率zh_TW
dc.subjectsilica dioxideen
dc.subjectsol-gelen
dc.subjectAFMen
dc.subjectsurface morphologyen
dc.subjectrefractive indexen
dc.subjectglass transition temperatureen
dc.subjectorganic/inorganic nanocompositesen
dc.subjecttitanium dioxideen
dc.title以表面改質及分散技術製備高折射率有機/無機奈米複合材料zh_TW
dc.titleFabrication of High Refractive Index Organic/Inorganic Nanocomposite via Surface Modification and Dispersion Techniqueen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林更青(Keng-Ching Lin),林有銘(Yu-Ming Lin),周力行(Joseph Lik Hang Chau),林進誠(Jin-Chein Lin)
dc.subject.keyword折射率,有機/無機奈米複合材料,溶膠-凝膠法,原子力顯微鏡,表面型態,玻璃轉移溫度,二氧化鈦,二氧化矽,zh_TW
dc.subject.keywordrefractive index,organic/inorganic nanocomposites,sol-gel,AFM,surface morphology,glass transition temperature,titanium dioxide,silica dioxide,en
dc.relation.page105
dc.rights.note未授權
dc.date.accepted2006-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved