請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25633
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊哲人 | |
dc.contributor.author | Tsung-Han Yu | en |
dc.contributor.author | 游宗翰 | zh_TW |
dc.date.accessioned | 2021-06-08T06:22:15Z | - |
dc.date.copyright | 2006-08-01 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-31 | |
dc.identifier.citation | 參考文獻
1.G. Hoyle, “High Speed steel”, 1988. 2.George A. Roberts and Robert A. Cary, High Speed Steels, Tools Steels, p.627-761. 3.T. Mukherjee, Physical Metallurgy of high-speed steel. 4.葉明堂,SKD-11模具鋼之熱處理,台灣大學碩士論文,1983。 5.R. Wilson, “Metallurgy & Heat Treatment of Tool Steels”, pblished by McGraw-Hill Book Co. Ltd, 1975, pp.62-79, pp.146-162. 6.G. Hoyle, High Speed Steel. Butterworth & Co. (Publishers) Ltd, Cambridge, England, pp.76-81 (1988). 7.Donald J. Blickwede, Morris Cohen, George A. Roberts, Trans, ASM, Vol. 42, p.1161, 1980. 8.G. Steven et al., Trans. ASM, p.62, 1969. 9.R.W. Balluffi, A. Brokman and A.H. King, Acta metall., Vol. 30, 1982, p.1453. 10.W.T. Haswell, W. Stasko, F.R. Daxin, Processing and Properties of High Speed Tool Steels, M.G.H. Wells and L.W. Lherbier, eds., TMS-AIME, Warrendale, PA, 1980, p.147. 11.K. Kio, “Carbide Precipitation, secondary hardness, and red hardness of high speed steel”, J. Iron and Steel Inst., Vol. 174, 1954, p.223. 12.G. Hoyle, High Speed Steel. Butterworth & Co. (Publishers) Ltd, Cambridge, England, pp.14-17 (1988). 13.J. Blickwede et al., Trans. ASM, Vol. 42, p.1186 (1960). 14.喻世祿,高速鋼與高速鋼鍜造,國防工業出版社,pp.62-68 (1989)。 15.H. Wisell, Met. Trans. Vol. 22A, p.1391 (1991). 16.G. Hoyle, High Speed Steel. Butterworth & Co. (Publishers) Ltd, Cambridge, England, p.59-61 (1988). 17.H. Brandis et al., T.E. Tech. Ber., Special Issue, 5 (1983). 18.G. Hoyle, High Speed Steel. Butterworth & Co. (Publishers) Ltd, Cambridge, England, pp.112-114 (1988). 19.R. Wang, H.O. Andren, H. Wisell and G.L. Dunlop, “The Role of Alloy Composition in the Precipitation Behavior of High Speed Steels”, Acta Metall., Vol. 40, 7, pp.1727-2738, 1992. 20.G. Hoyle, “High Speed Steels”, Butterworth, lst ed., pp.67-74, 1988. 21.O. Zonesshal and M. Cohen, Trans. ASM, June, 1943, p.380. 22.C.S. Robert, B.L. Averback and M. Cohen, Trans. ASM, 1953, Vol. 45, pp.576-604. 23.P. Payson, “The metallurgy of tools steels”, 1962, pp.131-260. 24.R.W. Balluffi and M. Cohen, Trans. ASM, 1951, Vol. 45, pp.576-604. 25.R.W. Balluffi and M. Cohen, Trans. ASM, 1951, Vol. 45, pp.576-604. 26.C.S. Robert, B.L. Averback and M. Cohen, Trans. ASM, 1953, Vol. 45, pp.576-604. 27.O. Zonesshal and M. Cohen, Trans. ASM, June, 1943, p.380. 28.P. Payson, “The metallurgy of tools steels”, 1962, pp.131-260. 29.D.D. Huffman, Metal Progress, Dec., 1974. 30.O. Zonesshal and M. Cohen, Trans. ASM, June, 1943, p.380. 31.R.W. Balluffi and M. Cohen, Trans. ASM, 1951, Vol. 45, pp.576-604. 32.George A. Roberts and Robert A. Cary, High Speed Steels, Tools Steels, pp.627-761. 33.R.W. Balluffi and M. Cohen, Trans. ASM, 1951, Vol. 45, pp.576-604. 34.P/M Tool Steels in Metal Handbook, Powder Metall., Vol. 9, pp.784-793, 1991. 35.ASM Handbook, Heat Treating, Vol. 4, ASM International, pp.711-766, 1991. 36.A.J.C. Wilson et al., “Structure Report”, International Union of Crystallography, pp.43-45, 1949. 37.E. Tekin and M.H. Richman, “An Electron-Microscopical Study of the Tempering of Tungsten High Speed Steels”, Metallography, Vol. 3, pp.327-335, 1970. 38.J.W. Martin, “Precipitation Hardening”, Pergamon Press, lst ed., pp.3-24, 1968. 39.A. Kelly and R.B. Nicholson, “Precipitation Hardening”, Pergamon Press, 1963. 40.George Krauss. “Principle of Heat Treatment of Steel”, 1979. 41.M. Cohen The Strengthening of Steel. Trans ASM-AIME. Vol. 224, 1962, p.1281-1289. 42.A.R. Marder and A.O. Benscoter, Trans. ASM, Vol. 61, 1958, p.293. 43.S.K. Das and G. Thomas, Met. Trans, 1970, p.325. 44.P.M. Kelly and J. Nutting, Proc Roy. Soc, Vol. 259, 1960, p.45. 45.M. Oka and C.M. Wayman, Trans. ASM., Vol. 62, 1969, p.370. 46.R.L. Patterson and C.M. Wayman, Acta Met., Vol. 14, 1966, p.347. 47.G.R. Speich, Trans. TMS-AIME, Vol. 245, 1969, p.2553. 48.G.A. Robert and R.A Cary, “Tool Steel”, ASM, 1980. 49.R.Wilson, “Metallurgy and Heat Treatment of Tool Steels”, McGraw Hill Book Co.(UK) Ltd. 1975. 50.G. Hoyle, “High Speed Steel”, Butterwordths, (1988), p.59. 51.Gao B. and Wang S. in: Proc. First International High Speed Steel Conference, Leoben, 26th to 28th March 1990, p.430~437. 52.D.D. Huffman “Avoiding retained austenite in tools steels” Metal progress. Dec. 1974. 53.M. Cohen, P.K.Koh, Trens. AM. Soc. Metals, 27(1939), 1015. 54.M.A. Nikanorov, Metallov. I Term. Obr., 1954(1), 185 55.H.K.D.H. Bhadeshia, Worked Examples in the Geometry of Crystals, 2nd edition., Inst. Metals, London, 2001 56.H.K.D.H. Bhadeshia, Bainite in Steels: Transformations, Microstructure and Properties, 2nd edition, IOM Communications, 2001 57.J.D Watson and P.G. McDougall, Acta Metall., Vol. 21, (1973), pp.961-973 58.H.K.D.H. Bhadeshia, Acta Metall., Vol. 29, (198l), pp.1117-1130 59.H.K.D.H. Bhadeshia, Scripta Met., Vol. 17, (1983), pp.1475-1479 60.U. Dahmen, Scripta Met., Vol. 21, (1987), pp.1029-1034 61.D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 1992, pp.384-385 62.R.W.K. Honeycombe and H.K.D.H. Bhadeshia, Steels: Microstructure and Properties, 2nd edition, Edward Arnold, London, 1995 63.G. Krauss, A.R. Marder, Metall. Trans., 2(1971) 2343 64.G. Wasserman, Mitt. Kaiser-Wilhelm-Inst. Eseinforch, Dusseldorf, 17(1935),149 65.J.S. Bowles, and J.K. Mackenzie, Acta Metall., Vol. 2, Jan., (1954), pp.129-137 66.D. P. Koistinemihe and R. E. Marburger, Acta. Metal., Vol. 7, 1959, p.59. 67.H.K.D.H Bhadeshia, Bainite in Steels: Transformations, Microstructure and Properties, 2nd edition, Edward Arnold, London, 1995 68.T.Y. Hsu, lnvitcd Paper, Presented at the Inter. Conf. on Displacive Phase Transformations and Their Applications in Materals Engineering., held in Illinois, 1996, TMS,(1998),119 69.P.M. Inchkovich, Metall. I. Term. Obr., 1954(l), p.171 70.G.R. Speich, Trans. TMS-AIME, 1969, vol.62, p.957 71.J.W. Christian, The Mechanism of Phase Transformations in Crystalline Solids, Inst. Of Metals, Monograph No.33, 1969 72.G.R. Speich, Trans. TME-AIME, 1969, vol.245, p.2553. 73.S.K. Das and G. Thomas, Met. Trans, 1970, vol.1, p.325. 74.R.W. Cahn and P. Haasen, editors, Physical Metallurgy, part Ⅱ, 1983, p.1041. 75.G. Krauss, STEELS﹕Heat Treatment and Processing Principles, 1990, p.43. 76.P.M. Kelly and J. Nutting, Proc Roy. Soc, 1960, vol.259, p.45 77.M. Oka and C.M. Wayman, Trans. ASM, 1969, vol.62, p.370 78.G. Krauss and W. Pitsch, Trans. TMS-AIME, 1965, vol.233, p.919. 79.R.L. Patterson and C.M. Wayman, Acta Met., 1966, vol.14, p.347. 80.A.R. Marder and A.O. Benscoter, Trans. ASM, 1968, Vol.61, p293. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25633 | - |
dc.description.abstract | 本研究是針對榮剛重工生產的粉末高速鋼GPM-A30做特性、組織等方面的探討,企圖以穿透式電子顯微鏡組織為研究方向,配合掃描式電子顯微鏡組織觀察,以及熱膨脹曲線分析,探討高速鋼淬火及各次回火組織之相變態。
隨著淬火溫度的升高,碳化物固溶於基地的量急遽升高,使得基地中的碳含量提高,降低沃斯田鐵組織的Ms溫度,對沃斯田鐵有安定化的作用,故沃斯田鐵再淬火後的殘留比例也急遽升高。淬火溫度提高,強化基地的效果降低,再由於殘留沃斯田鐵增加,使硬度下降。 殘留沃斯田鐵在回火的過程中,分解產生碳化物,而使得Ms溫度提高,有利於麻田散鐵生成。由熱膨脹曲線可知,經三次回火後,殘留沃斯田鐵幾乎已完全分解而不存在。同時,由實驗結果曲線證明,一次回火的效率不大,只有多次回火才能使殘留沃斯田鐵完全(或幾乎完全)相變。 經由顯微組織觀察可以發現,殘留的沃斯田鐵在回火的冷卻過程中會轉變為麻田散鐵,這種新生的板片麻田散鐵(在高碳中,通常為雙晶麻田散鐵)是未經回火,對基地的韌性是有害的,所以必須再進行第二次的回火,使先前硬脆的新生麻田散鐵析出合金碳化物而轉變為強韌的回火麻田散鐵組織,並且兼具適當的硬度與韌性;實驗後證實回火期間沃斯田鐵之催化作用能有效地使基地重新調質,並利用多次回火冷卻的過程來消除殘留沃斯田鐵且逐步相轉變而得到最終回火麻田散鐵的穩定組織。 | zh_TW |
dc.description.abstract | The effect of tempering on the decomposition of retained austenite in a powder metallurgy (PM) high-speed steel, GPM A30, has been monitored with a high-speed dilatometer. The corresponding microstructures of specimens with different tempering cycles have been investigated by a combination of scanning electron microscopy and analytical transformation electron microscopy. The as-quenched structure of the steel studied is composed of retained austenite, untempered martensite and carbides. The results indicate that the complete transformation of retained austenite can be more nearly accomplished by two or triple tempering cycles than by a single long-time cycle. The possible transformation mechanism for the decomposition of retained austenite during multiple tempering cycles is attributed to the invariant-plane-strain of the prior martensitic transformation extending accommodation defects to the adjacent retained austenite, which favors further transformations in the subsequent tempering operations.
There has been intensive research work on retained austenite and lath martensite in low-carbon alloy steels. However, little TEM research work has been carried out on twinned plate martensite with retained austenite in high-carbon alloy steels . It is naturally very difficult to produce electron-transparent samples for TEM (because the high-carbon alloys are quite brittle), but TEM investigation continues to assume greater significance in research. GPM A30 is a high-carbon grade in commercial P/M high speed steels, and is widely used in such applications as metal cutting tools and metal forming dies. In this work, dilatometric experiments were performed to investigate the tempering response in quench-treated specimens of GPM A30 high speed steel. The resulting scanning electron micrographs and transmission electron micrographs were examined to elucidate the microstructural evolution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:22:15Z (GMT). No. of bitstreams: 1 ntu-95-D89542011-1.pdf: 2189473 bytes, checksum: 09aedb0e838f16f84908b3991d7d82cb (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目錄
第一章 前 言............................. 1 第二章 文獻回顧............................. 4 2.0 簡介..................................... 4 2.1傳統冶煉鑄造高速鋼與粉末高速鋼之比較...... 4 2.1.1 GPM A30(相當於AISI ASP30)粉末高速鋼...5 2.2 麻田散鐵相變態 ............................6 2.2.1 麻田散鐵的特徵..........................7 2.2.2 麻田散鐵的晶體結構......................8 2.2.3 麻田散鐵的結晶學........................9 2.2.4 麻田散鐵的型態學........................12 2.2.4.1 板條狀麻田散鐵(Lath Martensite).....13 2.2.4.2 板片狀麻田散鐵 (Plate Martensite).....14 2.2.5 殘留沃斯田鐵 ............................15 2.3合金元素對高速鋼之影響.....................16 2.3.1碳(C)....................................16 2.3.2鎢(W)....................................17 2.3.3鉬(Mo)...................................18 2.3.4鉻(Cr)....... ............................18 2.3.5釩(V)....................................19 2.3.6鈷(Co)...................................19 2.4高速鋼碳化物的探討.........................20 2.4.1高速鋼中碳化物的種類.....................20 2.4.2合金碳化物對高速鋼的影響.................22 2.4.3 合金鋼碳化物相變態模式..................22 2.5高速鋼之熱處理.............................23 2.5.1高速鋼的淬火硬化與深冷處理...............23 2.5.2含V、Mo、Cr等合金鋼之回火,通常可以分成下列五個階段: .....................................24 2.5.3高速鋼的回火熱處理.......................26 第三章 實驗方法..............................34 3.1實驗材料...................................40 3.2 實驗流程..................................41 3.2掃描式電子顯微鏡(SEM)的觀察和EDAX之半定量成份分析 ...........................................42 3.3熱處理試棒的製作及使用儀器.................42 3.4穿透式電子顯微鏡(TEM)的試片製作及觀察....43 第四章 粉末高速鋼GPM A30相變態研究............49 4.1最佳淬火溫度之選擇.........................49 4.1.1前 言...................................49 4.1.2晶粒大小與淬火溫度之關係.................49 4.2熱膨脹曲線之探討...........................53 4.2.1前 言...................................53 4.2.2高速工具鋼熱處理之膨脹曲線...............53 4.3顯微組織觀察...............................57 4.3.1原有狀態(As Received)的顯微組織........57 4.3.2淬火狀態的顯微組織.......................58 4.3.2.1固溶淬火溫度的影響.....................58 4.3.2.2 1160℃×3min淬火後之SEM顯微組織........58 4.3.2.3 1160℃×3min淬火後之TEM顯微組織........59 4.3.3回火狀態的顯微組織.......................61 4.3.3.1 SEM顯微組織...........................61 4.3.3.2 TEM顯微組織...........................64 第五章 結 論...............................106 第六章 建議未來工作.........................108 參考文獻.....................................109 | |
dc.language.iso | zh-TW | |
dc.title | 粉末高速鋼之顯微組織相變態特性及其相關機械性質之研究 | zh_TW |
dc.title | The characteristics of microstructure phase transformation and mechanical properties in GPM A30 powder metallurgy high speed steel | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林新智,王星豪,邱傳聖,蕭健男 | |
dc.subject.keyword | 粉末冶金高速鋼,殘留沃斯田鐵分解,板片麻田散鐵,熱膨脹儀曲線,碳化物相變化, | zh_TW |
dc.subject.keyword | powder metallurgy (PM) high speed steel,decomposition of retained austenite,plate martensite,thermal dilatometer curve,carbide transformation, | en |
dc.relation.page | 114 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2006-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。