Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2510
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃玲瓏
dc.contributor.authorLi-Fen Hungen
dc.contributor.author洪麗分zh_TW
dc.date.accessioned2021-05-13T06:41:13Z-
dc.date.available2017-08-14
dc.date.available2021-05-13T06:41:13Z-
dc.date.copyright2017-08-14
dc.date.issued2017
dc.date.submitted2017-06-30
dc.identifier.citationAlméras T, Derycke M, Jaouen G, Beauchene J, Fournier M (2009) Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits. J Exp Bot 60:4397-4410 doi:10.1093/jxb/erp276
Alméras T, Fournier M (2009) Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J Theor Biol 256:370-381
Alméras T, Thibaut A, Gril J (2005) Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees 19:457-467 doi:10.1007/s00468-005-0407-6
Araki N, Fujita M, Saiki H, Harada H (1983) Transition of fiber wall structure from normal wood to tension wood in certain species having gelatinous fibers of S1+G and S1+S2+S3+G types. J Jap Wood Res Soc 29:491-499
Archer RR (1986) Growth stresses and strains in tress. Springer-Verlag, Berlin
Baba K, Park YW, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Ojio Y, Okuyama T, Taniguchi T, Ohmiya Y, Kondo T, Shani Z, Shoseyov O, Awano T, Serada S, Norioka N, Norioka S, Hayashi T (2009) Xyloglucan for generating tensile stress to bend tree stem. Mol Plant 2(5):893-903
Bamber RK (1987) The Origin of Growth Stresses: A Rebuttal. IAWA 8:80-84
Bamber RK (2001) A general theory for the origin of growth stresses in reaction wood: How trees stay upright. IAWA 22:205-212
Bastien R, Douady S, Moulia B . (2014) A unifying modeling of plant shoot gravitropism with an explicit account of the effects of growth. Front Plant Sci 5: 136
Batianoff, G.N. & Butler, D.W. (2002) Assessment of invasive naturalised plants in south-east Queensland. Plant Prot Q 17: 27-34.
Badia AM, Mothe F, Constant T, Nepveu G (2005) Assessment of tension wood detection based on shiny appearance for three poplar cultivars. Ann For Sci 62 62:43-49
Bowling AJ, Vaughn KC (2008) Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose. Am J Bot 95:655-663. doi:10.3732/ajb.2007368
Boyd JD (1972) Tree growth stresses—Part V: Evidence of an origin in differentiation and lignification. Wood Sci Technol 6:251-262
Boyd JD (1973) Compression wood force generation and functional mechanics. NZ JI For Sci 3:240-258
Clair B, Alméras T, Pilate G, Jullien D, Sugiyama J, Riekel C (2011) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol 155(1):562-570
Clair B, Alméras T, Sugiyama J (2006a) Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Ann For Sci 63:507-510 doi:10.1051/forest:2006032
Clair B, Alméras T, Yamamoto H, Okuyama T, Sugiyama J (2006b) Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91(3):1128-1135
Clair B, Ruelle J, Beauchêne J, Prévost MF, Fournier M (2006c) Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer. IAWA 27:329-338
Clarke SH (1939) Stresses and strains in growing timber. Forestry 13:68-79
Coutand C, Fournier M, Moulia B (2007) The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation. Plant Physiol 144:1166-1180 doi:10.1104/pp.106.088153
Coutand C, Pot G, Badel E (2014) Mechanosensing is involved in the regulation of autostress levels in tension wood. Trees 28:687-697 doi:10.1007/s00468-014-0981-6
Dassot M, Fournier M, Ningre F, Constant T (2012) Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model. Am J Bot 99:1427-1435. doi:10.3732/ajb.1200086
Dinwoodie JM (1966) Growth Stresses in Timber—A Review of Literature. Forestry 39:162-170
Doğu AD, Grabner M (2010) A staining method for determining severity of tension wood. Turk J Agric For 34(5):381-392
Donaldson L (2008) Microfibril angle: measurement, variation and relationships - a review. IAWA 29(4):345-386
Du S, Yamamoto F (2003) Ethylene evolution changes in the stems of Metasequoia glyptostroboides and Aesculus turbinata seedlings in relation to gravity-induced reaction wood formation. Trees 17:522-528. doi:10.1007/s00468-003-0275-x
Du S, Yamamoto F (2007) An overview of the biology of reaction wood formation. J Integr Plant Biol 49:131-143
Duncker P, Spiecker H (2008) Cross-sectional compression wood distribution and its relation to eccentric radial growth in Picea abies [L.] Karst. Dendrochronologia 26(3):195-202
Ewart AJ, Mason-Jones AJ (1906) The formation of red wood in conifers. Ann Bot 20:201-204
Fang CH, Clair B, Gril J, Alméras T (2007) Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain. Wood Sci Technol 41:659-671
Fang CH, Clair B, Gril J, Liu SQ (2008) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA 29(3):237-246
Fisher JB (1985) Induction of reaction wood in Terminalia (Combretaceae): roles of gravity and stress. Ann Bot 55:237-248
Fisher JB, Honda H (1979) Branch geometry and effective leaf area: A study of Terminalia-branching pattern. 1. Theoretical trees. Am J Bot 66:633-644
Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and Its role in tree architecture. Bot Gaz 142:82-95
Florida Exotic Pest Plant Council (2015) Florida Exotic Pest Plant Council’s 2015 List of Invasive Plant Species. http://www.fleppc.org/. accessed 24 June 2016
Fournier M, Bordonne PA, Guitard D, Okuyama T (1990) Growth stress patterns in tree stems. Wood Sci Technol 24:131-142
Fournier M, Bailleres H, Chanson B (1994a) Tree biomechanics: growth, cumulative prestresses, and reorientations. Biomimetics 2:229-251
Fournier M, Chanson B, Thibaut B, Guitard D (1994b) Measurements of residual growth strains at the stem surface. Observations on different species. Ann For Sci 51(3):249-266
Funada R, Kubo T, Fushitani M (1990) Earlywood and latewood formation in Pinus densiflora trees with different amounts of crown. IAWA 11:281-288
Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S, Kubo T, Sano Y (2008) Gibberellin-induced formation of tension wood in angiosperm trees. Planta 227:1409-1414. doi:10.1007/s00425-008-0712-6
Gardiner B, Barnett J, Saranpää P, Gril J (2014) The biology of reaction wood. Springer-Verlag Berlin Heidelberg.
Goswami L, Dunlop JWC, Jungnikl K, Eder M, Gierlinger N, Coutand C, Jeronimidis G, Fratzl P, Burgert I. (2008) Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J 56:531-538.
Gričar J, Zupančič M, Čufar K, Oven P (2007) Wood formation in Norway spruce (Picea abies) studied by pinning and intact tissue sampling method. Wood Res 52(2):1-9
Grzeskowiak V, Sassus F, Fournier M (1996) Macroscopic staining, longitudinal shrinkage and growth strains of tension wood of poplar (Populus x euramericana cv I.214). Ann Sci For 53(6):1083-1097
Heinrich I, Banks J (2002) Using the pinning method to track intra-seasonal growth in Toona ciliata (Australian Red Cedar) - Christmas Greetings from Australia! IAWA 23:458-458
Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212-220
Hӧster HR, Liese W (1966) On the occurrence of reaction tissue in roots and branches of dictyledons. Holzforschung 20:80-90
Huang YS, Hung LF, Kuo-Huang LL (2010) Biomechanical modeling of gravitropic response of branches: roles of asymmetric periphery growth strain versus self-weight bending effect. Trees 24:1151-1161 doi:10.1007/s00468-010-0491-0
Jacobs MR 1945 The growth stresses of woody stems. Commonwealth Forestry Bureau, Australia, Bull 28.
Japan Material Society (1982) Dictionary of wood industry. In: Committee of Woody Material Department (ed) Wood Industry Publishers, Kyoto, p 573 (In Japanese)
Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, Inc., New York, USA
Jourez B, Avella-Shaw T (2003) Effet de la durée d’application d’un stimulus gravitationnel sur la formation de bois de tension et de bois opposé dans de jeunes pousses de peuplier (Populus euramericana cv ‘Ghoy’). Ann For Sci 60:31-41
Jourez B, Riboux A, Leclercq A (2001) Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus. Can J For Res 31:1676-1683
Jullien D, Widmann R, Loup C, Thibaut B (2013) Relationship between tree morphology and growth stress in mature European beech stands. Ann For Sci 70(2):133-142
Kubler, H. 1987. Growth stresses in trees and related wood properties. For Abstr 48:131-189.
Kučera LJ, Philipson WR (1977a) Growth eccentricity and reaction anatomy in branchwood of Drimys winteri and five native New Zealand trees. New Zeal J Bot 15:517-524
Kučera LJ, Philipson WR (1977b) Occurrence of reaction wood in some primitive dicotyledonous species. New Zeal J Bot 15:649-654
Kuĉera LJ, Philipson WR (1978) Growth eccentricity and reaction anatomy in branchwood of Pseudowintera colorata. Am J Bot 65(6):601-607
Kuroda K, Kiyono Y (1997) Seasonal rhythms of xylem growth measured by the wounding method and with a band-dendrometer: An instance of Chamaecyparis obtusa. IAWA 18:291-299
Kuo-Huang LL, Chen SS, Huang YS, Chen SJ, Hsieh YI (2007) Growth strains and related wood structures in the leaning trunks and branches of Trochodendron aralioides - A vessel-less dicotyledon. IAWA 28:211-222
Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiol 23:959-968
Mäkinen H, Seo JW, Nӧjd P, Schmitt U, Jalkanen R (2008) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. Eur J For Res 127(3):235-245
Matsuzaki J, Masumori M, Tange T (2006) Stem phototropism of trees: A possible significant factor in determining stem inclination on forest slopes. Ann Bot 98:573-581 doi:10.1093/aob/mcl127
Matsuzaki J, Masumori M, Tange T (2007) Phototropic bending of non-elongating and radially growing woody stems results from asymmetrical xylem formation. Plant Cell Environ 30:646-653 doi:10.1111/j.1365-3040.2007.01656.x
Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63(2):551-565
Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: The molecular muscle of trees. Ann Bot 102(5):659-665
Moulia B, Coutand C, Lenne C (2006) Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modeling of plant architecture. Am J Bot 93(10):1477-1489
Münch, E. 1938. Statics and dynamics of the cell wall’s spiral structure, especially in compression wood and tension wood. Flora 32, 357-424.
Mukogawa Y, Nobuchi T, Sahri MJ (2003) Tension wood anatomy in artificially induced leaning stems of some tropical trees. Forest Res 75:27-33
Nicholson JE (1971) A rapid method for estimating longitudinal growth stresses in logs. Wood Sci Technol 5:40-48
Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, Brumer H, Teeri TT, Stalbrand H, Mellerowicz EJ (2011) Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen. Plant Physiol 155(1):399-413
Nix LE, Brown CL (1987) Cellular kinetics of compression wood formation in slash pine Wood Fiber Sci 19:126-134
Nocetti M, Romagnoli M (2008) Seasonal cambial activity of spruce (Picea abies Karst.) with indented rings in the Paneveggio forest (Trento, Italy). Acta Biol Cracoviensia Ser Bot 50:27-34
Norberg PH, Meier H (1966) Physical and chemical properties of the gelatinous layer in tension wood fibres of aspen (Populus tremula L.). Holzforschung 20:174-178
Nugroho, WD, Nakaba, S, Yamagishi Y, Begum S, Marsoem SN, Ko JH, Funada R (2013). Gibberellin mediates the development of gelatinous fibres in the tension wood of inclined Acacia mangium seedlings. Ann Bot 112: 1321-1329. doi:10.1093/aob/mct198
Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S, Marsoem SN, Funada R. (2012) Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Ann Bot 110: 887-895. doi:Doi 10.1093/Aob/Mcs148
Ohashi Y, Sahri MH, Yoshizawa N, Itoh T (2001) Annual rhythm of xylem growth in rubberwood (Hevea brasiliensis) trees grown in Malaysia. Holzforschung 55(2):151-154
Okuyama T, Sasaki Y, Kikata Y, Kawai N (1981) The seasonal change in growth stress in the tree trunk. J Jpn Wood Res Soc 27:350-355
Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR (1994) Growth stresses in tension wood - role of microfibrils and lignification. Ann Sci For 51(3):291-300
Onaka F (1949) Studies on compression- and tension-wood. Mokuzai Gakkaishi 1:1-88
Patel JD, Menon ARS, Reghu CP (1984) Growth eccentricity in the branchwood of Kigella pinnata (JACQ.) DC. IAWA 5:81-84
Pilate G et al. (2004) Lignification and tension wood. C R Biol 327:889-901. doi:10.1016/j.crvi.2004.07.006
Robards AW (1965) Tension wood and eccentric growth in Crack willow (Salix fragilis, L.). Ann Bot 29:419-431
Ruelle J, Beauchêne J, Yamamoto H, Thibaut B (2011) Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Sci Technol 45(2):339-357
Ruelle J, Clair B, Beauchêne J, Prévost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria. IAWA 27:341-376
Ruelle J, Yamamoto H, Thibaut B (2007a) Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperms species. Bioresources 2:235-251
Ruelle J, Yoshida M, Clair B, Thibaut B (2007b) Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees 21:345-355 doi:10.1007/s00468-007-0128-0
Savidge RA, Mutumba GM, Heald JK, Wareing PF (1983) Gas chromatography-mass spectros-copy identification of 1-aminocyclopropane-1-carboxylic acid in compression wood vascular cambium of Pinus contorta Dougl. Plant Physiol 71:434-436
Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland Silva Fenn 38(2):167-178
Schmitz N, Robert EMR, Verheyden A, Kairo JG, Beeckman H, Koedam N (2008) A patchy growth via successive and simultaneous cambia: Key to success of the most widespread mangrove species Avicennia marina? Ann Bot 101:49-58. doi:10.1093/aob/mcm280
Scurfield G, Wardrop AB (1963) The nature of reaction wood. VII. Lignification in reaction wood. Aust J Bot 11:107-116
Scurfield G (1972) Histochemistry of reaction wood cell walls in two species of Eucalyptus and in Tristania conferta R. BR. Aust J Bot 20:9-26
Scurfield G (1973) Reaction wood: its structure and function: lignification may generate the force active in restoring the trunks of leaning trees to the vertical. Science 179:647-655
Seo JW, Eckstein D, Schmitt U (2007) The pinning method: From pinning to data preparation. Dendrochronologia 25:79-86. doi::10.1016/j.dendro.2007.04.001
Sierra-De-Grado R, Pando V, Martinez-Zurimendi P, Penalvo A, Bascones E, Moulia B (2008) Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree Physiol 28(6):835-846
Sinnott EW (1952) Reaction wood and the regulation of tree Form. Am J Bot 39:69-78
Spurr A (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31-43
The R Core Team. (2013). R : A Language and Environment for Statistical Computing
Thibaut B, Grila J, Fournier M (2001) Mechanics of wood and trees: some new highlights for an old story. C R Acad Sci Paris Série II b 329(9):701-716
Timell TE (1986a) Compression wood in Gymnosperms vol I. Springer-Verlag, Berlin
Timell TE (1986b) Compression wood in Gymnosperms vol II. Springer-Verlag, Berlin
Tsai CC, Hung LF, Chien CT, Chen SJ, Huang YS, Kuo-Huang LL (2012) Biomechanical features of eccentric cambial growth and reaction wood formation in broadleaf tree branches. Trees 26:1585-1595 doi:DOI 10.1007/s00468-012-0733-4
Veenin T, Nobuchi T, Fujita2 M, Siripatanadilok S (2006) Seasonal characteristics of wood formation in the elite genetic – Based Eucalyptus camaldulensis Dehnh. Kasetsart J (Nat Sci) 40:83-90
Wang Y, Gril J, Clair B, Minato K, Sugiyama J (2010) Wood properties and chemical composition of the eccentric growth branch of Viburnum odoratissimum var. awabuki. Trees 24:541-549 doi:10.1007/s00468-010-0425-x
Wang Y, Gril J, Sugiyama J (2009) Variation in xylem formation of Viburnum odoratissimum var. awabuki: growth strain and related anatomical features of branches exhibiting unusual eccentric growth. Tree Physiol 29:707-713 doi:10.1093/treephys/tpp007
Wardrop AB, Dadswell HE (1948) The nature of reaction wood. I. The structure and properties of tension wood fibres. Aust J Sci Res 1:1-16
Wardrop AB, Dadswell HE (1950) The nature of reaction wood II. The cell wall organization of compression wood tracheids. Aust J Biol Sci 3:1-13
Wardrop AB, Dadswell HE (1955) The nature of reaction wood. IV. Variations in cell wall organization of tension wood fibres. Aust J Bot 3(2):177-189
Washusen R, Ilic J, Waugh G (2003a) The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill. Holz Roh Werkst 61:299-303 doi:10.1007/s00107-003-0388-3
Washusen R, Ilic J, Waugh G (2003b) The relationship between longitudinal growth strain, tree form and tension wood at the stem periphery of ten- to eleven-year-old Eucalyptus globulus Labill. Holzforschung 57:308-316
White DJB (1962) Tension wood in a branch of sassafras. J I Wood Sci 10:74-80
Wilson BF, Archer RR (1977) Reaction wood - induction and mechanical action. Annu Rev Plant Phys 28:23-43
Wilson BF, Archer RR (1979) Tree design: some biological solutions to mechanical problems. BioScience 29:293-298
Wilson BF, Ching-Te C, Zaerr JB (1989) Distribution of endogenous indole-3-acetic acid and compression wood formation in reoriented branches of Douglas fir. Plant Physiol 91:338-344
Wolter KE (1968) A new method for marking xylem growth. For Sci 14(1):102-104
Yamaguchi K, Shimaji K, Itoh T (1983) Simultaneous inhibition and induction of compression wood formation by morphactin in artificially inclined stems of Japanese larch (Larix leptolepis Gordon). Wood Sci Technol 17:81-89
Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J (2005) Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci 51:222-233 doi:10.1007/s10086-004-0639-x
Yamamoto F, Angeles G, Kozlowski TT (1987) Effect of ethrel on stem anatomy of Ulmus-americana seedlings. IAWA 8:3-10
Yamamoto F, Kozlowski TT (1987) Effect of ethrel on growth and stem anatomy of Pinus-halepensis seedlings. IAWA 8:11-20
Yang J-L, Waugh G (2001) Growth stress, its measurement and effects. Aust For 64:127-135
Yoshida M, Nakamura T, Yamamoto H, Okuyama T (1999) Negative gravitropism and growth stress in GA(3)-treated branches of Prunus spachiana Kitamura f. spachiana cv. Plenarosea. J Wood Sci 45:368-372
Yoshida M, Ohta H, Yamamoto H, Okuyama T (2002) Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees 16:457-464 doi:10.1007/s00468-002-0186-2
Yoshida M, Okuda T, Okuyama T (2000a) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Ann For Sci 57:739-746
Yoshida M, Yamamoto H, Okuyama T (2000b) Estimating the equilibrium position by measuring growth stress in weeping branches of Prunus spachiana Kitamura f. spachiana cv. Plenarosea. J wood Sci 46:59-62
Yoshimura K, Hayshi S, Itoh T (1981) Studies on the improvement of the pinning method for marking xylem growth I. Minute examination of pin marks in taeda pine and other species. Wood Res 67:1-16
Yoshizawa N, Satoh M, Yokota S, Idei T (1993a) Formation and structure of reaction wood in Buxus microphylla var. insularis Nakai. Wood Sci Technol 27:1-10
Yoshizawa N, Watanabe N, Yokota S, Idei T (1993b) Distribution of guaiacyl and syringyl lignins in normal and compression wood of Buxus microphylla var. insularis Nakai. IAWA 14(2):139-151
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2510-
dc.description.abstract抗張材在維持被子植物的生物力學穩定上扮演重要的角色,因此在研究傾斜主幹恢復直立以及枝條角度變化的機制時,必須同時關注抗張材的生物與物理特性。本論文以台灣欒樹為材料,研究在恢復直立的傾斜樹苗主幹中以及樹冠不同角度的枝條內,抗張材的形成、構造與分布等生物特徵以及應變分布的物理特徵,以期了解抗張材在傾斜主幹與不同角度枝條中所扮演的角色。
在人為傾倒的兩年生台灣欒樹樹苗主幹中,抗張材的生成與恢復直立的過程歷時約三個月。透過插針法,我們確認:當樹苗傾倒時,主幹上側的形成層區包含形成層與發育中的木質部纖維細胞均感受到力學變化(相對位置的改變),開始形成抗張材,其中的膠質纖維可產生強烈的收縮應變,將主幹拉回到直立的位置。在傾斜主幹之基部形成的抗張材比在半株高處者多,產生的收縮應變也較大,顯示在台灣欒樹樹苗傾斜主幹恢復直立的過程中,主幹基部扮演較關鍵的角色。此外,傾斜主幹伴隨上側抗張材形成的偏心生長有助於主幹恢復直立,而在主幹下側部分測量點所量到的壓縮應變亦可靠著推力協助主幹恢復直立。針對樹冠之不同角度枝條的研究則顯示,台灣欒樹枝條內存在著和傾斜主幹不同的應變分布、抗張材分布與偏心生長。枝條之生長應變參數隨著木材細胞次生細胞壁的成熟而有季節性的變化;角度大的傾斜枝條上下側可能具有收縮或壓縮應變,然而角度較小的近直立枝條的上下側多為收縮應變,顯示這兩種枝條可能具有不同的功能。抗張材可能分布在枝條的各個位置,和抗張材主要分布在傾斜樹苗主幹的上側不同,因此,抗張材有助於枝條角度的動態調整。枝條的偏心生長位於枝條下方,可能阻礙枝條的上揚,甚至促進枝條的下壓。枝條上多樣的應變分布與抗張材分布,顯示各枝條可能為了因應環境因子如重力和光線的差異,而有不同的生物力學需求。
zh_TW
dc.description.abstractTension wood plays a role in maintaining the mechanical stability of angiosperm trees. Both biological and physical aspects of tension wood are essential in understanding the mechanism of trunk or branch reorientation. In this dissertation, we first worked on both the tension wood formation and its biomechanical function in artificially inclined 2-year-old Koelreuteria henryi seedlings. The tension wood formation and reorientation process of the trunk last for about 3 months. With pinning method, we confirmed that at the beginning of inclination the cambial zone including the vascular cambium and the developing normal wood fibers on the upper side of the inclined trunk perceives the onset of mechanical change and starts to produce G-fibers that generate a strong contractile released growth strain (RGS) for gravitropic correction. Stronger contractile RGS and more tension wood were found at the trunk base than at the half-height, suggesting that the trunk base plays a key role in trunk uprighting of K. henryi seedlings. The eccentric cambial growth in the tension wood side increases the efficiency of gravitropic correction and the compressive strains measured in the opposite wood of some inclined seedlings also help the upright movement. Then we further discriminated the biomechanical behavior of branches from leaning trunks. We thus investigated the development of growth strains, distribution of tension wood, and eccentricity on the branchwood of K. henryi. The results revealed the unusual distribution of released growth strain and tension wood as well as growth eccentricity. The growth strain parameter showed seasonal changes, possibly due to the maturation of secondary cell wall. Both sides of the plagiotropic branches exhibited either contractive or extensive growth strains, whereas the orthotropic branches exhibited mostly contractive strains on both sides, which implied different physiological function of the two branch types. The tension wood arcs may occur in any direction of the branchwood which is different from the inclined trunk with tension wood on the upper side, suggesting dynamic adjustment in branch reorientation. In contrast to trunks, the hypotrophic eccentric growth in branches functioned in obstructing upward movement and even facilitates downward movement, probably because the dissociation between tension wood and eccentric growth. Diversified growth strain and tension wood distribution on the branches may reflect the individual biomechanical requirements for each branch depending on the environmental factors, possibly gravitropic and phototropic stimuli.en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:41:13Z (GMT). No. of bitstreams: 1
ntu-106-D97b44007-1.pdf: 9892966 bytes, checksum: 8af320b3704301c9888ff0f47e6a4ecc (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 ii
中文摘要及關鍵詞 iii
英文摘要及關鍵詞 iv
目錄 vi
Index of Figures ix
Index of Tables xiii
Introduction 1
Anatomical characteristics of reaction wood 1
Macroscopic Appearance 1
Cellular Structure 2
The role of plant hormones in reaction wood formation 4
The onset and formation of reaction wood and the pinning method 5
Physical characteristics of reaction wood 7
Growth stress and growth strain 7
Generation of reaction stresses 8
The study of growth strain distribution in angiosperm trees 9
Biomechanical models 9
Goals of this dissertation 10
Materials and Methods 12
Plant material and experimental design 12
Study on the reorientation process of the artificially inclined seedlings 12
Study on the distribution of growth strain and reaction wood of the branches 14
Released growth strain (RGS) measurement 15
Wood anatomical structure and morphometry of the artificially inclined seedlings 16
Eccentricity calculation, radius and radial wood growth increment measurement of the branchwood 18
Tension wood distribution and branchwood structure 19
Prediction of the bending dynamics of trunks and branches 20
Modified model for defoliating action of deciduous trees 21
Statistics 22
Results 24
Study on the reorientation process of the artificially inclined seedlings of Koelreuteria henryi 24
Dynamics of the uprighting process of the inclined seedlings 24
Released growth strain distribution 26
Eccentric growth and tension wood formation 30
The relationship between RGSs and tension wood ratio 36
Prediction of bending dynamics 36
Study on the distribution of growth strain and reaction wood of the branches 40
Strain distribution on branches of Koelreuteria henryi 40
Growth eccentricity and tension wood distribution of K. henryi branches 44
Prediction of the bending tendency of K. henryi branches 49
Rates of curvature change 54
The effect of eccentric growth increment on bending tendency of the branches 55
Effects of defoliation on the gravitropic response 56
Discussion 59
Dynamics of the up-righting process of the inclined trunk of Koelreuteria henryi seedlings 59
Spatial and temporal RGS distribution on the trunk of the inclined Koelreuteria henryi seedlings 60
Strain distribution on the branches of Koelreuteria henryi 62
Seasonal change of growth strain and RGS parameter on the branches of Koelreuteria henryi 63
Strain and tension wood ratio in the inclined trunk of Koelreuteria henryi seedlings 64
Tension wood distribution and its role in branch bending 65
The onset and formation of G-fibers 66
The role of eccentric growth increment in gravitropic correction 67
Interrelation between gravitational force and gravitropic correction 69
Functional differences between the branches and tree trunks 69
Conclusion 71
References 72
Appendix Ⅰ. Height and diameter growth of the studied seedlings 86
Plant materials and measurement 86
Results 87
Appendix Ⅱ. Practice of the pinning method and interpretation of the pinning result 89
Plants and practice of pinning method 89
Sample preparation 90
The interpretation of the pinning result 90
Appendix Ⅲ. Tension wood distribution in the studied seedlings 98
Sample preparation 98
Results 98
Appendix Ⅳ. Cambial activity of the artificially inclined seedlings 101
Plant materials and sample preparation 101
Results 101
Appendix Ⅴ. Tension wood induction in branches of Koelreuteria henryi 106
Plant materials and branch angle manipulation 106
Results 107
dc.language.isoen
dc.subject生長應變zh_TW
dc.subject生長應力zh_TW
dc.subject台灣欒樹zh_TW
dc.subject彎曲傾向zh_TW
dc.subject插針法zh_TW
dc.subject傾斜主幹zh_TW
dc.subject偏心生長zh_TW
dc.subject枝條zh_TW
dc.subject抗張材zh_TW
dc.subject生物力學zh_TW
dc.subjectbiomechanical modelen
dc.subjecttension wooden
dc.subjectKoelreuteria henryi Dummeren
dc.subjectgrowth strainen
dc.subjectgrowth eccentricityen
dc.subjectgravitropic correctionen
dc.subjectG-fibersen
dc.subjectbranchen
dc.subjectbending dynamicsen
dc.subjectbending tendencyen
dc.title臺灣欒樹的抗張材在傾斜苗木與枝條的解剖構造與生物力學功能zh_TW
dc.titleAnatomical Structure and Biomechanical Function of Tension Wood in Inclined Seedlings and Branches of Koelreuteria henryi Dummeren
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃彥三,簡慶德,邱少婷,蕭淑娟,王兆麟
dc.subject.keyword台灣欒樹,生長應力,生長應變,生物力學,抗張材,枝條,偏心生長,插針法,傾斜主幹,彎曲傾向,zh_TW
dc.subject.keywordbending dynamics,bending tendency,biomechanical model,branch,G-fibers,gravitropic correction,growth eccentricity,growth strain,Koelreuteria henryi Dummer,tension wood,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201701210
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-07-02
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf9.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved