請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24859完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃坤祥(Kuen-Shyang Hwang) | |
| dc.contributor.author | Chia-Cheng Tsai | en |
| dc.contributor.author | 蔡嘉正 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:57:24Z | - |
| dc.date.copyright | 2007-11-15 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-11-05 | |
| dc.identifier.citation | 參考文獻
[1] 黃坤祥, “粉末冶金學”, 第二版, 中華民國粉末冶金協會, 2003, pp. 246-255. [2] R. M. German, “Powder Injection Molding”, Metal Powder Industries Federation, Princeton, NJ, 1990. [3] B. C. Mutsuddy and R. G. Ford, “Ceramic Injection Molding”, Chapman&Hall, New York, NY, 1995. [4] R. M. German and A. Bose, “Injection Molding of Metals and Ceramics”, Metal Powder Industries Federation, Princeton, NJ, 1997. [5] C. Lall, ”Soft Magnetism:Fundamentals for Powder Metallurgy and Metal Injection Molding”, Metal Powder Industries Federation, Princeton, NJ, 1992. [6] K. M. Kulkarni, “A Study of MIM Feedstocks Made with Powders of Different Particle Sizes”, Advances in Powder Metallurgy, Edited by E. R. Andreotti and P. J. McGeehan, MPIF, Princeton, NJ, 1990, Vol. 3, pp. 330-340. [7] 黃坤祥, “粉末冶金學”, 第二版, 中華民國粉末冶金協會, 2003, pp. 266. [8] T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, “Binary Alloy Phase Diagrams”, American Society for Metals international, Metals Park, Ohio, 1990. [9] H. Miura, T. H. Lim, and R. M. German, “Mechanical Properties of Injection Molded 4600 Steel”, Journal of the Japan Society of Powder and Powder Metallurgy, 1992, Vol. 39, No. 4, pp. 254-259. [10] H. Miura, K. Urakami, S. Ando, and T. Honda, “Metal Injection Molding of Prealloyed 4600 Fine Powder”, Journal of the Japan Society of Powder and Powder Metallurgy, 1993, Vol. 40, No. 4, pp. 388-392. [11] M. Youseffi, C. S. Wright, and F. M. Jeyacheya, “Effect of Carbon Content, Sintering Temperature, Density and Cooling Rate upon Properties of Prealloyed Fe-1.5Mo Powder”, Powder Metallurgy, 2000, Vol. 43, No. 3, pp. 270-274. [12] U. Engström, D. Milligan, and A. Klekovkin, “Mechanical Properties of High Performance Chromium Materials”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. R. Gasbarre and J. W. von Arx, MPIF, San Diego, CA, 2006, part 7, pp. 21-32. [13] C. Heiligers, M. Herrmann, I. J. Sigalas, and J. H. Neethling, “Microstructure and Properties of Hot-Pressed(Hf, Ti)C”, International Journal of Refractory Metals & Hard Materials, 2007, Vol. 25, pp. 300-309. [14] P. King and B. Lindsley, “Performance Capabilities of High Strength Powder Metallurgy Chromium Steels with Two Different Molybdenum Contents”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. R. Gasbarre and J. W. von Arx, MPIF, San Diego, CA, 2006, part 7, pp. 1-11. [15] T. F. Stephenson, M. Korotkin, and S. Metcalfe, “Enhanced Properties of Extra-fine Nickel Steels for PM Gears”, 2006 Powder Metallurgy World Congress and Exhibition, Edited by K. Y. Eun and Y. S. Kim, Korean Powder Metallurgy Institute, Busan, Korea, 2006, part C01-04-3, pp. 393-394. [16] B. A. Gething, D. F. Heaney, D. A. Koss, and T. J. Mueller, “The Effect of Nickel on the Mechanical Behavior of Molybdenum P/M Steels”, Materials Science and Engineering A, 2005, Vol. 390, pp. 19-26. [17] K. S. Hwang and M. Y. Shiau, “Effects of Nickel on the Sintering Behavior of Fe-Ni Compacts made from Composite and Elemental Powders”, Metallurgical and Materials Trans., 1996, Vol. 27B, pp. 203-211 [18] H. Zhang, R. M. German, K. F. Hens, and D. Lee, “Sintering Temperature and the Mechanical Properties of Injection Molded Fe-2Ni Steel”, Powder Metallurgy International, 1990, Vol. 22, No. 6, pp. 15-18. [19] H. Zhang, R. M. German, K. F. Hens, and D. Lee, “Processing and the Mechanical Properties of Injection Molded Fe-2%Ni Steels”, Advances in Powder Metallurgy, Edited by E. R. Andreotti and P. J. McGeehan, MPIF, Princeton, NJ, 1990, Vol. 3, pp. 437-453. [20] 殳國俊, “粉末射出成形高強度合金鋼之研究”, 國立台灣大學, 材料科學與工程研究所, 碩士論文, 2001, p. 31. [21] 黃振賢, “金屬熱處理”,文京圖書, 1990, p. 83. [22] G. Greetham and A. Reid, “The Development of Vacuum-Sintered Steels”, Powder Metallurgy, 1969, Vol. 12, No. 23, pp. 79-106. [23] T. F. Stephenson, M. Korotkin, and S. Metcalfe, “Mechanical Properties of Reduced Mo Content PM Steels with Extra-Fine Ni Powder”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. R. Gasbarre and J. W. von Arx, MPIF, San Diego, CA, 2006, part 10, pp. 160-168. [24] P. King, S. Patel, S. Shah, J. Falleur, and G. Wewers, “Lower Molybdenum Steels for High Performance Powder Metallurgy Applications”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. R. Gasbarre and J. W. von Arx, MPIF, San Diego, CA, 2006, part 7, pp. 81-94. [25] E. Dudrová, M. Kabátová, R. Bidulský, and A. S. Wronski, “Industrial Processing, Microstructures and Mechanical Properties of Fe-(2-4)Mn-0.85Mo-(0.3-0.7)C Sintered Steels”, Powder Metallurgy, 2004, Vol. 47, No. 2, pp 181-190. [26] M. Youseffi, S. C. Mitchell, A. S. Wronski, and A. Cias, “Sintering, Microstructure, and Mechanical Properties of PM Manganese-Molybdenum Steels”, Powder Metallurgy, 2000, Vol. 43, No. 4, pp. 353-358. [27] N. Candela, F. Velasco, M. A. Martinez, and J. M. Torralba, “Influence of Microstructure on Mechanical Properties of Molybdenum Alloyed P/M Steels”, Journal of Materials Processing Technology, 2005, Vol. 168, pp. 505-510. [28] S. Unami and K. Hayashi, “Effect of Sintering Conditions and Mo Addition on Sintering Densification of Fe Coarse Powder”, Journal of the Japan Society of Powder and Powder Metallurgy, 1997, Vol. 44, No. 8, pp. 765-769. [29] Md. Hamiuddin, “Role of Molybdenum in Sintered Steels”, Powder Metallurgy International, 1983, Vol. 15, No. 3, pp. 147-150. [30] H. Danninger, “Sintering of Mo Alloyed P/M Steels Prepared from Elemental Powders(I. Sintering Temperature and Mechanical Properties)”, Powder Metallurgy International, 1992, Vol. 24, No. 2, pp. 73-79. [31] H. Danninger, “Sintering of Mo Alloyed P/M Steels Prepared from Elemental Powders (II. Mo Homogenization and Dimensional Behavior)”, Powder Metallurgy International, 1992, Vol. 24, No. 3, pp. 163-168. [32] R. W. K. Honeycombe and H. K. D. H. Bhadeshia, “Steels:Microstructure and Properties”, Edward Arnold, London, UK, pp. 184-186. [33] S. Berg, “P/M Steel Suitable for Sinterhardening in Respect of Cost and Performance”, Advances in Powder Metallurgy and Particulate Materials, Edited by W. B. Eisen and S. Kassam, MPIF, New Orleans, USA, 2001, part 5, pp. 18-25. [34] T. Marcu, A. Molinari, G. Straffelini, and S. Berg, “Tensile Properties of Vacuum Sintered Dual Phase Steels”, International Journal of Powder Metallurgy, 2004, Vol. 40, pp. 57-64. [35] Mollinari, T. Bacci, P. Campestrini, M. Pellizzari, and B. Tesi, “Plasma Nitriding of Fe-Cr-Mo Sintered Steels”, Powder Metallurgy, 1999, Vol. 42, No. 2, pp. 119-125. [36] M. W. Wu, K. S. Hwang, H. S. Huang, and K. S. Narasimhan, “Improvements in Microstructure Homogenization and Mechanical Properties of Diffusion-Alloyed Steel Compact by the Addition of Cr-Containing Powders”, Metallurgical and Materials Transactions A, 2006, Vol. 37A, pp. 2559-2568. [37] M. W. Wu and K. S. Hwang, “Improved Homogenization of Ni in Sintered Steels through the Use of Cr-Containing Prealloyed Powders”, Metallurgical and Materials Transactions A, 2006, Vol. 37A, pp. 3577-3585. [38] K. S. Hwang, M. W. Wu, F. C. Yen, and C. C. Sun, “Improvement in Microstructure Homogeneity of Sintered Compacts through Powder Treatments and Alloy Designs”, Material Science Forum, 2007, Vol. 534-536, pp. 537-540. [39] S. J. Kim, C. G. Lee, T. H. Lee, and C. S. Oh, “Effect of Cu, Cr and Ni on Mechanical properties of 0.15wt.%C TRIP-aided Cold Rolled Steels”, Scripta Materialia, 2003, Vol. 48, pp. 539-544. [40] G. S. Upadhyaya and M. Homiuddin, “Effect of Alloying Additions on Sintering of Iron-Phosphorous Premixes”, Sintering-Theory and Practice:proceedings of the 5th Internaional Round Table Conference on Sintering, Edited by D. Kolar, S. Pejovnik, and M. M. Ristić, Portorož, Yugoslavia, 1981, pp.291-298. [41] L. E. Iorio and W. M. Garrison, “The Effects of Titanium Additions on AF1410 Ultra-High-Strength Steel”, Metallurgical and Materials Transaction A, 2006, Vol. 37A, pp. 1165-1173. [42] G. F. Bocchini, B. Rivolta, G. Silva, E. Poggio, M. R. Pinasco, and M. G. Ienco, “Microstructural and Mechanical Characterisation of Some Sinter Hardening Alloys and Comparisons with Heat Treated PM Steels”, Powder Metallurgy, 2004, Vol. 47, No. 4, pp. 343-351. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24859 | - |
| dc.description.abstract | 金屬射出成形(Metal Injection Molding, MIM)適合製作形狀複雜的小零件,與傳統鋼鐵鑄鍛件加工產品相比,具有較大的競爭力。其中又以燒結硬化型合金鋼佔有較大的優勢,燒結硬化型合金鋼不需後續熱處理加工即可達到高硬度、高強度之機械性質。欲達到燒結硬化型合金鋼的效果,就必須添加可促進硬化能的合金元素(如錳、鉬、鉻、矽、銅、鎳等),使燒結後即可得到類似熱處理後的組織,進而達到具高強度的機械性質。合金元素在合金系統中的均勻程度也會影響到合金系統能否達到最高的機械性質,燒結硬化型合金鋼Fe-8Ni-0.8Mo-0.8Cr在前人的研究其抗拉強度已可達到約1900MPa,但鎳在鐵中的體擴散很慢,導致合金系統中鎳仍然不均勻,本研究以粒徑更細小的鎳粉取代原本在合金系統中的鎳粉,希望藉此使鎳在合金系統中擴散均勻,進而促進機械性質的提升。
結果顯示,當使用粉末粒徑較細的Ni-110取代Ni-123時,藉由EPMA的分析結果顯示燒結硬化型合金鋼Fe-8Ni-0.8Mo-0.8Cr中鎳擴散的非常均勻,且試片經超深冷處理與回火後,其抗拉強度超過2100MPa,硬度為52.2 HRC,密度為7.56 g/cm3,伸長量為3.9%。 除此之外,鉻在合金系統中也可促進鎳的均勻性,主要是因為鉻在合金系統中降低了鎳與碳的排斥,使鎳能更均勻的分散在組織中,進而提升機械性質。 研究結果也顯示,在合金系統中添加TiH2時,因為鈦的活性很大,在熱脫脂過程中TiH2脫氫後即與氧結合成二氧化鈦,並在組織中形成聚集,使得抗拉強度下降。 另外,經實驗結果發現,本合金系統在鎳含量為7wt%時,具有最高的抗拉強度值,而當使用預合金粉為基礎粉時雖鎳的分佈均勻,但因燒結後密度不高,使得抗拉強度無法提升。 | zh_TW |
| dc.description.abstract | Metal injection molding (MIM) process has many advantages in making small parts with complicated shapes over the press-and-sinter process and other manufacturing processes. The MIM parts usually must attain high sintered densities and good mechanical properties through high temperature sintering and heat treatment. However, the quenching process will cause problems in distortion and dimensional control. Thus, sinter-hardening process has become a focus of recent MIM industries. In this study, compositions and processing parameters of Fe-8Ni MIM 2700 alloys were adjusted in order to improve the mechanical properties of the sinter-hardened parts without the need of quenching.
The results show that fine Ni powders reduced the diffusion distance and improved the homogeneity of Ni and C in the matrix. The addition of Cr also had similar effect. It was found from the carburization test of Fe-Ni alloys that the presence of Cr helped reduce the repulsion effect between carbon and nickel. Thus, the homogeneity of C and Ni was improved and the mechanical properties were enhanced. The use of prealloyed powder showed no improvement due to the decrease of sintered density when the same sintering temperature was used despite that the Ni was uniformly distributed. The employment of cryogenic treatment after sintering caused transformation of the retain austenite to martensite and thus could increase the tensile strength and hardness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:57:24Z (GMT). No. of bitstreams: 1 ntu-96-R89542031-1.pdf: 15649959 bytes, checksum: 8f57308b85c7b9f8c4ae889a28343e1d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌 謝 I
Abstract II 摘要 III 目錄 IV 圖目錄 VI 表目錄 XII 第一章 文獻回顧 1 1.1 碳含量的影響 2 1.2 鎳的影響 3 1.3 鉬的影響 5 1.4 鉻的影響 9 1.5 鈦的影響 12 1.6 粉末均質化 13 1.7 燒結硬化型合金鋼 14 第二章 實驗 16 2.1 原料 17 2.1.1基礎粉 17 2.1.2黏結劑 25 2.2 混合方式及混煉 25 2.3 成形 26 2.4 脫脂 27 2.4.1溶劑脫脂 27 2.4.2熱脫脂 28 2.5 燒結 28 2.7 成分分析 29 2.8 燒結密度的測量 29 2.9 機械性質的測試 29 2.10 金相製備 29 2.11 Ferrite %測量 30 2.12 測試儀器 30 第三章 結果與討論 31 3.1 回火溫度的影響 31 3.2 碳與鎳的排斥效應 35 3.3 不同粉末粒徑鎳粉的影響 44 3.4 不同鎳含量的影響 50 3.5 不同碳含量的影響 55 3.6 使用預合金粉4140、4365、Fe-2Ni對機械性質的影響 62 3.7 鉻的影響 73 3.8 添加TiH2的影響 82 第四章 結論 89 第五章 未來工作 90 參考文獻 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 燒結 | zh_TW |
| dc.subject | 金屬粉末射出成形 | zh_TW |
| dc.subject | 燒結硬化型合金鋼 | zh_TW |
| dc.subject | 超深冷處理 | zh_TW |
| dc.subject | 粉末冶金 | zh_TW |
| dc.subject | powder metallurgy. | en |
| dc.subject | Metal injection molding | en |
| dc.subject | powder injection molding | en |
| dc.subject | sinter-hardening | en |
| dc.subject | homogenization | en |
| dc.title | Fe-Ni燒結硬化合金鋼中Ni之均質化及機械性質改善對策 | zh_TW |
| dc.title | Improvement on the Homogenization of Ni in Fe-Ni Sinter-Hardening Alloy Steels | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊哲人(Jer-Ren Yang),連雙喜(Shuang-Shii Lian),林招松(Chao-Sung Lin) | |
| dc.subject.keyword | 金屬粉末射出成形,燒結硬化型合金鋼,超深冷處理,粉末冶金,燒結, | zh_TW |
| dc.subject.keyword | Metal injection molding,powder injection molding,sinter-hardening,homogenization,powder metallurgy., | en |
| dc.relation.page | 95 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-11-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 15.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
