Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2474
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王凡(Farn Wang)
dc.contributor.authorWen-Chi, Hungen
dc.contributor.author洪文起zh_TW
dc.date.accessioned2021-05-13T06:40:40Z-
dc.date.available2017-07-20
dc.date.available2021-05-13T06:40:40Z-
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-07-17
dc.identifier.citation1. Android Studio: the Monkey tester. https://developer.android.com/studio/ test/monkey.html (2017) Accessed: 2017-01-08.
2. Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2) (1987) 87–106
3. Angluin, D.: Queries and concept learning. Machine Learning 2(4) (1988) 319–342
4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning functions represented as multiplicity automata. JACM 47(3) (2000) 506–530
5. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity and equivalence queries. SIAM J. Comput. 25(6) (1996) 1268–1280
6. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Volume 12 of EATCS Monographs. Springer (1988)
7. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numerica 4 (1995) 1–51
8. Carlyle, J., Paz, A.: Realizations by stochastic finite automata. Journal of Com- puter and System Sciences 5(1) (1971) 26–40
9. Chen, Y.F., Hsieh, C., Lengál, O., Lii, T.J., Tsai, M.H., Wang, B.Y., Wang, F.: PAC learning-based verification and model synthesis. In: ICSE. (2016) 714–724
10. Fliess, M.: Matrices de Hankel. J. Math. Pures Appl 53(9) (1974) 197–222
11. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. JACM 45(4) (1998) 653–750
12. Herd, B., Miles, S., McBurney, P., Luck, M.: Quantitative analysis of multiagent systems through statistical model checking. In: Engineering Multi-Agent Systems. (2015) 109–130
13. Kwiatkowska, M.: Quantitative verification: Models, techniques and tools. In: ESEC/FSE, ACM (2007) 449–458
14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In: RV. (2010) 122–135
15. Nesterov, Y.: Squared functional systems and optimization problems. In: High Performance Optimization. (2000) 405–440
16. Ohnishi, H., Seki, H., Kasami, T.: A polynomial time learning algorithm for rec- ognizable series. IEICE Transactions on Information and Systems 77(10) (1994) 1077–1085
17. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob- abilistic systems. In: CAV. (2004) 202–215
18. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. 8th edn. Wiley Publishing (2008)
19. Valiant, L.G.: A theory of the learnable. CACM 27(11) (1984) 1134–1142
20. Walkinshaw, N.: Assessing test adequacy for black-box systems without specifica- tions. In: ICTSS. (2011) 209–224
21. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Stateflow/Simulink verification. FMSD 43(2) (2013) 338–367
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2474-
dc.description.abstract此篇論文應用機率近似模型學習演算法學習多樣性自動機。該演算法會產生目標軟體之多樣性自動機模型,並將其應用於量化分析。使用產生之多樣性自動機模型,我們設計了一系列演算法可以預測軟體量化分析目標軟體的最大值與平均值等特性。此外,我們修改該演算法,使其在輸入字母數量並非固定時也可以通用。在此片論文中我們實際測試了五種不同類型的軟體,實驗證明我們預測的結果與暴力法算得之結果相當接近,足以證明此演算法可以產生一些傳統難以預測的數據,並具有相當高的可信度。zh_TW
dc.description.abstractIn this paper, we apply a probably approximately correct (PAC) learning algorithm for multiplicity automata which can generate a quantitative model of target system behaviors with a statistical guarantee. By using the generated multiplicity automata model, we apply two analysis algorithms to estimate the minimum, maximum and average values of system behaviors. Also, we demonstrate how to apply the learning algorithm when the alphabet symbol size is not fixed. The result of the experiment is encouraging; Our approach made the estimation which is as precise as the exact reference answer obtains by a brute force enumeration.en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:40:40Z (GMT). No. of bitstreams: 1
ntu-106-R04921051-1.pdf: 1859531 bytes, checksum: 7bbe792e78b0baadf0a81322abb3dd2a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Related Work 3
1.3 Contribution 4
Chapter 2 Preliminaries 5
2.1 Multiplicity Automata 5
2.2 Hankel Matrix 6
Chapter 3 Learning Algorithm of MA 7
3.1 PAC Learning 7
Chapter 4 Overview 10
Chapter 5 Analyzing Properties of MA 12
5.1 Computing the min. of 13
5.2 Computing the average of 14
Chapter 6 Optimizations 15
6.1 Learning the alphabet symbols incrementally 15
6.2 Double check the learned min./max. value 16
Chapter 7 Running Example: Calculator 17
Chapter 8 Calculator Experiment 21
8.1 Calculator 21
8.2 Considerations on the choice of distribution 22
8.3 Incremental alphabet refinement 23
8.4 Distribution of the execution time 23
Chapter 9 Operating System Scheduling Experiment 25
Chapter 10 Missionaries and Cannibals Experiment 26
Chapter 11 Amount of Data Transmission in a Website 28
Summary 29
REFERENCE 30
dc.language.isoen
dc.title多樣性自動機之學習演算法與其量化分析zh_TW
dc.titleQuantitative Analysis using Multiplicity Automata Learningen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee雷欽隆(Chin-Laung Lei),陳銘憲(Ming-Syan Chen),陳郁方(Yu-Fang Chen),江介宏(Jie-Hong Jiang)
dc.subject.keyword軟體測試,機率近似正確,機器學習,多樣性自動機,量化分析,zh_TW
dc.subject.keywordsoftware testing,probably approximately correct,machine learning,quantitative analysis,multiplicity automata,en
dc.relation.page31
dc.identifier.doi10.6342/NTU201701657
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-07-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf1.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved