
doi:10.6342/NTU201701657

國立臺灣大學電機資訊學院電機工程學研究所

碩士論文

 Graduate Institute of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

多樣性自動機之學習演算法與其量化分析

Quantitative Analysis using Multiplicity Automata Learning

洪文起

Wen-Chi, Hung

指導教授：王凡 博士

Advisor: Farn Wang, Ph.D.

中華民國 106年 7月

July, 2017

doi:10.6342/NTU201701657

 1

doi:10.6342/NTU201701657

 i

誌謝

獻上最誠摯的感謝，給我的雙親與蘊軒、你們的支持是我一路上的精神糧食與

動力。

兩年研究所生活中，我首先要感謝指導教授王凡教授、中研院陳郁方老師、王

伯堯老師、蔡明憲學長，在學習過程當中，從你們身上學習到不僅僅是軟體測試領

域的專業，更常蒙受許多教誨與叮嚀。

另外，要感謝雋飛、宗儒、謝橋，平日在實驗室與你們討論，總讓我受益匪淺，

也感謝你們在一起修課的日子中，給予協助及幫忙。

最後，要感謝實驗室的同學們俊豪、光奇、啟文、汝瑋、睿頡、懋哲，一起修

課討論作業和一起出遊的日子我真的很開心。

最後，謹以此文獻給我摯愛的雙親。

doi:10.6342/NTU201701657

 ii

中文摘要

此篇論文應用機率近似模型學習演算法學習多樣性自動機。該演算法會

產生目標軟體之多樣性自動機模型，並將其應用於量化分析。使用產生之多樣

性自動機模型，我們設計了一系列演算法可以預測軟體量化分析目標軟體的

最大值與平均值等特性。此外，我們修改該演算法，使其在輸入字母數量並非

固定時也可以通用。在此片論文中我們實際測試了五種不同類型的軟體，實驗

證明我們預測的結果與暴力法算得之結果相當接近，足以證明此演算法可以

產生一些傳統難以預測的數據，並具有相當高的可信度。

關鍵字：機率近似正確、機器學習、多樣性自動機、量化分析

doi:10.6342/NTU201701657

 iii

ABSTRACT

In this paper, we apply a probably approximately correct (PAC) learning algorithm

for multiplicity automata which can generate a quantitative model of target system

behaviors with a statistical guarantee. By using the generated multiplicity automata model,

we apply two analysis algorithms to estimate the minimum, maximum and average values

of system behaviors. Also, we demonstrate how to apply the learning algorithm when the

alphabet symbol size is not fixed. The result of the experiment is encouraging; Our

approach made the estimation which is as precise as the exact reference answer obtains

by a brute force enumeration.

Keywords: probably approximately correct, machine learning, quantitative analysis,

multiplicity automata

doi:10.6342/NTU201701657

 iv

CONTENTS

口試委員會審定書... #

誌謝	..	I	

中文摘要	...	II	

ABSTRACT	..	III	

CONTENTS	...	IV	

LIST	OF	FIGURES	...	VII	

LIST	OF	TABLES	..	VIII	

CHAPTER	1	 INTRODUCTION	...	1	

1.1	 Motivation	..	1	

1.2	 Related	Work	..	3	

1.3	 Contribution	...	4	

CHAPTER	2	 PRELIMINARIES	..	5	

2.1	 Multiplicity	Automata	...	5	

2.2	 Hankel	Matrix	...	6	

CHAPTER	3	 LEARNING	ALGORITHM	OF	MA	...	7	

doi:10.6342/NTU201701657

 v

3.1	 PAC	Learning	...	7	

CHAPTER	4	 OVERVIEW	...	10	

CHAPTER	5	 ANALYZING	PROPERTIES	OF	MA	...	12	

5.1	 Computing	the	min.	of	 𝐠𝐤	..	13	

5.2	 Computing	the	average	of	 𝒈𝒌	..	14	

CHAPTER	6	 OPTIMIZATIONS	...	15	

6.1	 Learning	the	alphabet	symbols	incrementally	...	15	

6.2	 Double	check	the	learned	min./max.	value	...	16	

CHAPTER	7	 RUNNING	EXAMPLE:	CALCULATOR	...	17	

CHAPTER	8	 CALCULATOR	EXPERIMENT	...	21	

8.1	 Calculator	...	21	

8.2	 Considerations	on	the	choice	of	distribution	...	22	

8.3	 Incremental	alphabet	refinement	...	23	

8.4	 Distribution	of	the	execution	time	..	23	

CHAPTER	9	 OPERATING	SYSTEM	SCHEDULING	EXPERIMENT	25	

CHAPTER	10	 MISSIONARIES	AND	CANNIBALS	EXPERIMENT	...	26	

doi:10.6342/NTU201701657

 vi

CHAPTER	11	 AMOUNT	OF	DATA	TRANSMISSION	IN	A	WEBSITE	28	

Summary	..	29	

REFERENCE	..	30	

doi:10.6342/NTU201701657

 vii

 LIST OF FIGURES

Figure 1 An 𝑀𝐴 computes the number of occurrences of symbol 𝑎Error! Bookmark

not defined.	

Figure 2 The learning algorithm for 𝑀𝐴 ... 8	

Figure 3 Replacing equivalence query with sampling. It assumes the following additional

input: a distribution 𝐷 over Σ ∗, the parameters 0	 < 	𝜀, 𝛿 < 1. 9	

Figure 4 Overview ... 10	

Figure 5 The PAC learning algorithm for MA that does not require to know the alphabet

beforehand. It assumes the following additional input: a distribution D over

words constructed from an unknown finite alphabet, the parameters 0 <

𝜀, 𝛿 < 1 and the initial value Σ = ∅. .. 15	

Figure 6 Iteration 1 ... 18	

Figure 7 Iteration2 .. 19	

doi:10.6342/NTU201701657

 viii

LIST OF TABLES

Table 1 Comparing the approximate average computed via learning and the the exact

answer obtained directly from the calculator. The parameters (𝜀, 𝛿, 𝑝) =

	(0.1, 0.9, 0.2). .. 20	

Table 2 Comparing the performance of natural and random alphabet mappings. The

parameters (𝜀, 𝛿, 𝑝) = 	 (0.2, 0.8, 0.1). ... 21	

Table 3 Comparing the performance using different sampling distributions. (𝜀, 𝛿) =

	(0.2, 0.8). We use the random alphabet mapping. 23	

Table 4 The time used in different steps of 𝑀𝐴 learning. .. 24	

Table 5 Performance on “Operating System Scheduling”. The parameters (𝜀, 𝛿, 𝑝) =

	(0.1, 0.9, 0.2). The row “Enumeration” is obtained by enumerating all words

of length 𝑘. .. 25	

Table 6 Performance on “Missionaries and Cannibals”. The parameters (𝜀, 𝛿, 𝑝) =

	0.1, 0.9, 0.2. The row “Enumeration” is obtained by enumerating all words

of length 𝑘. .. 27	

Table 7 Performance on the “Amount of Data Transmission in a Website” problem. The

parameters (𝜀, 𝛿, 𝑝) = 	0.1, 0.9, 0.2. Here the numbers are in byte and the size

of alphabet of the learned MA is 16. .. 28	

doi:10.6342/NTU201701657

 1

Chapter 1 Introduction

1.1 Motivation

When software developed, limited resources such as time and space are crucial in

the stage od system evaluation. Quantitative analysis of system behaviors gradually has

become a consequential research issue recently [12,13]. Normally, models are required to

describe system behaviors when conducting analysis. Quantitative model construction,

however, can be as hard as the analysis itself. Consider analyzing the amount of data

transmission in web browsing. When users click on hyperlinks, new pages are generated

and sent from servers through Internet. Suppose we want to estimate the average amount

of data transmission from one website over 𝑘 hyperlink clicks. In most cases, the first

thing to do is to construct a system model with a suitable abstraction. However, it is not

immediate clear how to construct an abstract quantitative model for such system

behaviors systematically and, even automatically.

We apply a probably approximately correct (PAC) learning algorithm which is

design for multiplicity automata to generate abstract models for quantitative analysis of

system behaviors. Multiplicity automata are the class of weighted automata over the semi-

ring (ℝ,+,×, 0, 1) . We also model system behaviors by words in the alphabet of a

multiplicity automaton. The quantity, such as the amount of data transmission, associated

with the system behavior is hence the result of the automaton on the input word. Through

a teacher who simulates the system on certain input and measures the quantity of interest,

the learning algorithm cab generate a multiplicity automaton as an approximation to

quantitative system behaviors with a statistical guarantee.

doi:10.6342/NTU201701657

 2

Unlike most applications in verification and software testing, we, in this paper, do

not aim for exact quantitative models of system behaviors but the approximations. For

quantitative analysis, quantities of system behaviors, such as response time, distance to a

target, heat generation, and energy consumption, are often measured with equipment and

hence imprecise. Inferring exact quantitative models is not very meaningful with the

existence of measurement errors. Moreover, exact learning is impossible when the target

software cannot be characterized mechanically or expressed by the model in use. On the

other hand, approximate quantitative models may suffice for certain quantitative analyses

such as average response time, medium power consumption. Exact models are hence not

necessary for such circumstances even if they are attainable.

After a multiplicity automaton is generated, we demonstrate how to analyze the

maximum and average values of system behaviors with a fixed length 𝑘 in Section 5.

The transitions of a multiplicity automaton with the alphabet of size 𝑛 can be

represented by a matrix form whose entries are polynomials of degree 𝑛. For behaviors

of length 𝑘, they can also be represented by a multivariate polynomial of degree 𝑘𝑛. The

polynomial enables us to conduct a variety of quantitative analysis with standard

mathematical tools. For example, we can calculate the maximum amount of data

transmission for 𝑘 hyperlink clicks in web browsing by gradient descent, genetic

algorithms, simulated annealing or other local maxima searching methods.

Several practical issues on applying learning to quantitative analysis are addressed

in Section 6. The previous algorithm [2] assumes a fixed alphabet symbol size. In the real

world, the alphabet may not be known in advance. We demonstrate an algorithm which

increment the alphabet symbol size when necessary. Besides, note that the generated

quantitative model is an approximation, some meaningless values, such as a negative

doi:10.6342/NTU201701657

 3

amount of data transmission, on certain behaviors might exist due to its inaccuracy. In

this paper, we give some amendments to prevent those meaningless analysis results.

The approach that we presented in this paper has several advantages. For instance,

once the mapping between words and system behaviors has been decided, our approach

runs fully automatically. After the quantitative models are generated, different analyses

can be computed on them without further simulation. For example, suppose we aim to

analyze the average amount of data transmission for 1,… , 𝑘 hyperlink clicks from the

home page. These 𝑘 analyses can all be counted by the same inferred approximate model.

The quantitative model can also be reused for other types of analyses or applications, such

as the maximum amount of data transmission. The experiment results in Section 8

suppose that the estimation obtained by our learning-based approach is almost as accurate

as the exact reference answer produced by a brute-force enumeration.

1.2 Related Work

Exact learning algorithms for classical automata was first proposed by Dana Angluin

[2]. The result has been generalized to the class of multiplicity automata in [5,6]. Also,

the concept of probably approximately correct (PAC) learning was first designed by

Valian in [19]. The idea of transform an exact learning algorithm to a probably

approximately correct (PAC) learning algorithm was presented in [3].

PAC learning has been applied to software testing and verification [20,11,9]. The

work in [20] consider the problem from a theoretical aspect. It focuses on issues related

to the lower bound on the number of required queries to generate a system model. The

work in [11] tests if the output of a graph-manipulating program is bipartite, 𝑘 -

colorable…etc. The paper of [9] apply PAC-learning to generate a model of a computer

doi:10.6342/NTU201701657

 4

software and then verify if any assertion or test case violation can occur in the automata

model. To the best of our knowledge, PAC-learning techniques have not been applied to

generate quantitative models of software system before. Both out approach presented and

statistical model checking [17,14,21] provide a statistical guarantee. Statistical model

checking suppose a given model exist while our inferred models with a statistical

guarantee. The generated models are reusable for different properties.

1.3 Contribution

The contributions of our works are as bellowed.

(a) A framework that automatically generates quantitative models from learning with

statistical guarantee.

(b) Effective and Efficient algorithm designed to check useful quantitative properties

of multiplicity automata.

(c) Down to detail analysis of the capacity of the learning algorithm when applied to

quantitative models’ construction and suggestion on effective optimizations.

doi:10.6342/NTU201701657

 5

Chapter 2 Preliminaries

In this paper, we assume ℕ is the set of natural numbers. Matrices and vectors are

all over the field of real number ℝ. For a Matrix 𝑀, 𝑀 (B,∗) is the 𝑖-th row of 𝑀 and

𝑀 (B,D) is the entry at row 𝑖 and column 𝑗. For vector 𝒖, 𝒖(𝑖) is its 𝑖-th entry. In this

paper, we suppose all vectors are column vectors. We use ℝG×H and ℝI to denote the

sets of matrices of size 𝑚×𝑛 and column vectors of size 𝑘, respectively. The product of

two matrices 𝑀K , 	𝑀L is denoted as 𝑀K𝑀L and the product of 𝑘 copies of 𝑀 is

denoted as 𝑀I . We use 𝑎, 𝑏, 𝑐, 𝑑 to denote symbols, 𝑤, 𝑥, 𝑦 to denote words, 𝜆 to

denote the empty word, and v to denote variables. The concatenation of two words 𝑥, 𝑦

is denoted as 𝑥 ∙ 𝑦. The set of integers 𝑘	|	𝑚 ≤ 𝑘 ≤ 𝑛 is denoted as [𝑚, 𝑛] and [𝑛]

is a shorthand for [1, 𝑛].

2.1 Multiplicity Automata

A multiplicity automaton (MA) 𝐴 = (𝑀, 𝑏) over a finite alphabet ∑ is rep-

resented as a set of transition matrices 𝑀 = 𝑀Z ∈ ℝH×H|𝑎 ∈ ∑ (one matrix for each

symbol in ∑) and an output vector 𝒃 ∈ ℝH. The output of an MA 𝐴 cor- responding to

a word ω＝𝑑K𝑑L ⋯𝑑G ∈ ∑_ is 𝐴 ω = [𝑀`a𝑀`b ⋯𝑀`c](K,∗)𝒃 and 𝐴(𝜆) 	= 	𝑏(1).

Intuitively, the entry [𝑀Z](B,D) the weight of the transition from state qi to qj with symbol

a and 𝒃(𝑖) is the weight of the state 𝑞B. The initial state is 𝑞K. The output of an MA w.r.t.

a word w is the sum of the weight of all runs (sequences of transitions) corresponding to

ω, where the weight of a run is the product of the weights of the last state and all

transitions in the run. An example of an MA from the view of a set of matrices and also

the view of a labeled state-transition system is given in Figure 1.

doi:10.6342/NTU201701657

 6

Figure 1 An 𝑀𝐴 computes the number of occurrences of symbol 𝑎

2.2 Hankel Matrix

The Hankel matrix (HM) of a function 𝑓 ∶ 	𝛴 ∗	→ ℝ	 is an infinite matrix F indexed

with words from Σ ∗ such that [𝐹](j,k) 	= 	𝑓(x	 · 	y). Let 𝑓 ∶ 	𝛴 ∗	→ ℝ	 be a function

with the corresponding HM F. For short, we use the rank of 𝑓, denoted rank (𝑓), to

mean the rank of 𝐹. We say an MA 𝐴 is equivalent to 𝑓	iff	∀𝑤 ∈ 𝛴 ∗∶ 𝐴(𝑤) = 𝑓(𝑤).

It has been shown in [8,10] that if 𝑟 = 𝑟𝑎𝑛𝑘(𝑓) is finite then the smallest MA 𝐴

equivalent to 𝑓 has 𝑟 states. More concretely, let [𝐹](ta,∗), [𝐹](tb,∗), . . . , [𝐹](tu,∗) be 𝑟

independent rows of 𝐹 with 𝑥K 	= 	𝜆 . One can construct an equivalent MA 𝐴	 =

	(𝑀, 𝑏) from F as follows. The output vector b is [𝐹](ta,v), [𝐹](tb,v), . . . , [𝐹](tu,v). The

transition matrices Ma ∈ M can be obtained by solving the following equation for each

𝑎	 ∈ 	𝛴, 𝑖	 ∈ 	 [𝑟]:

[𝐹](tB·Z,∗) 	= 	 [𝑀Z](B,D)D∈[x] [𝐹](tD,∗) .		− 		 (1)

Intuitively, Equation (1) states that the weight from the state represented by the word 𝑥B 	 ·

	𝑎 to any state 𝑞 is equivalent to the sum of the weights from state 𝑞B to state 𝑞D via

the symbol a multiplies the weight from qj to q for all 𝑗	 ∈ 	 [𝑟].

doi:10.6342/NTU201701657

 7

Chapter 3 Learning Algorithm of MA

Now we have all the building blocks required to describe the learning algorithm for

MA proposed by Beimel et al. [4], under the minimal adequate teacher (MAT) model by

Angluin [2]. The MAT model assumes the existence of a teacher an- swering two types

of queries about a function 𝑓 ∶ 	𝛴 ∗	→ ℝ: (a) On membership queries of a word ω,

denoted Mem(w), the teacher replies 𝑓(ω). (b) On equivalence queries of an MA 𝐴z,

denoted 𝐸𝑞𝑢(𝐴z), the teacher replies true when 𝐴 is equivalent to 𝑓. Otherwise, it

replies false accompanying with a word ω s.t. 𝐴z(ω) ≠ 𝑓(ω). Let F be the HM of the

target function 𝑓. When 𝑟	 = 	𝑟𝑎𝑛𝑘(𝑓) is finite, it is sufficient to characterize f using

an 𝑟	×	𝑟	sub-matrix of 𝐹 (with rank 𝑟) [4]. The learning algorithm (in Figure 2) tries to

find such an 𝑟	×	𝑟 matrix. Assume that the rank of the target function 𝑓 is finite and let

𝑟	 = 	𝑟𝑎𝑛𝑘(𝑓). For the MA learning algorithm in Figure 2, the content [𝐹~](t,∗) ,

[𝐹~](t∙Z,∗) can be obtained by 𝑟(𝑟	 + 	𝑟|𝛴|) membership queries. The existence of a

prefix satisfying conditions (a) and (b) is guaranteed by Claim 3.1 of [4] and it takes only

polynomially many membership queries to find such a prefix. Observe that adding 𝑦� +

1 to 𝑌 is sufficient to make the row of 𝑥� + 1 independent with all other rows in 𝑋.

The learning algorithm will find an MA with r states that is equivalent to f in r iterations.

3.1 PAC Learning

The MA learning algorithm assumes a teacher who can answer equivalence queries.

This assumption is invalid in many practical settings. Angluin [3] showed that even if we

substitute equivalence testing with sampling, we can still make statistical claims about

the difference between the target and inferred model.

doi:10.6342/NTU201701657

 8

Assume the target function for MA learning is 𝑓 ∶ 	𝛴 ∗	→ ℝ and a probability

distribution 𝐷 over 𝛴 ∗ is given. We use 𝜑(ω) to denote that the inferred MA Ah and

f are consistent on ω, i.e., 𝐴z(ω) 	= 	𝑓(ω). The term 𝑃𝑟𝑜𝑏�⇐�[¬𝜑(ω)] denotes the

probability that 𝜑(ω) is false for w chosen randomly according to 𝐷. For a hypothesis

of the form

𝐻 ∶ 	𝑃𝑟𝑜𝑏�⇐�[¬𝜑(𝜔)] 	≤ 	𝜀

The algorithm that we presented in this paper is as in Figure 2.

Figure 2 The learning algorithm for 𝑀𝐴

We call ε the error parameter and use confidence to denote the least probability that

the hypothesis H is correct. We say that an inferred MA is probably approximately correct

(PAC) [19] w.r.t. 𝜀 and 𝛿, denoted 𝑃𝐴𝐶(𝜀, 𝛿), if 𝐻 holds with confidence 𝛿. In the

example of estimating the amount of data transmission, 𝑓(ω) denotes the actual amount

of data transmission with the input ω and 𝐴z is the inferred MA. Consider the uniform

doi:10.6342/NTU201701657

 9

distribution 𝐷I over all words of length 𝑘 and (𝜀, 𝛿) 	= 	 (0.1, 0.9). We say 𝐴z is

𝑃𝐴𝐶	(𝜀, 𝛿) if with probability at least 90%, the probability that 𝑓(ω) and 𝐴z(ω) are

different is bounded by 10% when ω is chosen uniformly from words of length 𝑘. The

task of an equivalence query 𝐸𝑞𝑢(𝐴z) is changed from checking exact equivalence to

checking approximate equivalence. More concretely, Step(II) in Figure 2 is replaced with

the one in Figure 3.

Figure 3 Replacing equivalence query with sampling. It assumes the following additional

input: a distribution 𝐷 over Σ∗, the parameters 0	 < 	𝜀, 𝛿 < 1.

The teacher answers the i-th equivalence query by picking ni samples accord- ing to

D and testing if 𝐴z(ω) 	= 	𝑓(ω) for all samples ω. The number of samples 𝑛B needed

to establish that Ah is 𝑃𝐴𝐶	(𝜀, 𝛿) is given by Angluin in [3]. Note that the target function

f is not necessary of a finite rank. When f is of an infinite rank, the learning algorithm can

still infer an MA 𝐴 approximating 𝑓 with a statistical guarantee.

doi:10.6342/NTU201701657

 10

Chapter 4 Overview

The picture shown in Fig. 4 is the abstraction of the learning algorithm.

Figure 4 Overview

The learning algorithm for MA will be applied to construct a quantitative model of

system behaviors. Fix an alphabet 𝛴 for system actions. Assume that the system

behavior on ω	 ∈ 	𝛴 ∗ can be modeled by the quantity 𝑓(ω) 	∈ 	ℝ for some unknown

𝑓 ∶ 	𝛴 ∗	→ ℝ. Figure 4 gives an overview of our framework. In the figure, the Teacher

measures the quantity 𝑓(ω) by simulating the system on w. On a membership query

𝑀𝑒𝑚(ω) , the Teacher answers the query by measuring the quantity 𝑓(ω) . On an

equivalence query 𝐸𝑞𝑢(𝐴z), the Teacher checks if 𝐴z(ω) and the measured quantity

𝑓(ω) coincide on a number of randomly chosen ω. If so, the Teacher concludes that the

MA 𝐴z represents the unknown function 𝑓 with a statistical guarantee and the Learner

will pass 𝐴z to the Analyzer for further analysis. Otherwise, the Teacher returns 𝑤�

with 𝐴z(𝑤�) ≠ 	𝑓(𝑤�) . Once an approximation 𝐴 to the unknown function 𝑓 is

obtained from the Learner, the Analyzer transforms 𝐴 to a multivariant polynomial

𝑔I(𝑑K𝑑L ⋯𝑑I ∈ ΣI) which computes 𝐴(𝑑K𝑑L ⋯𝑑I) for any 𝑑K𝑑L ⋯𝑑I ∈ ΣI . The

transformation to the polynomial form allows us to perform various quantitative analyses

doi:10.6342/NTU201701657

 11

using powerful mathematical tools. Particularly, we are interested in the minimum and

average of system behaviors on inputs of length 𝑘. Section 5 explains how to analyze

such properties based on the polynomial 𝑔I. Limitations of the learning algorithm are

found during our case studies. The learning algorithm presumes a fixed alphabet. The

alphabet, however, is not predetermined when we analyze the average amount of data

transmission from a website. In the example, the number of hyperlinks per page (the size

of alphabet) is not known a priori. Moreover, recall that the inferred MA 𝐴 is an

approximation to the unknown function 𝑓. When 𝐴 is used to compute the minimum of

𝑓, the result can be a value that is not a possible outcome of the system under analysis.

For instance, a negative minimum waiting time may be computed from 𝐴. We develop

approaches to address those practical limitations in Section 6. In Section 7 and 8, four

examples are used to showcase how to design effective Teachers and evaluate the

performance of the proposed approach. The experimental results suggest that the

estimation made by our approach is very precise; it is very close to the exact reference

answer obtained by enumeration.

doi:10.6342/NTU201701657

 12

Chapter 5 Analyzing Properties of MA

When the learning algorithm finds an MA 𝐴 for the target system, the next step is

to analyze the quantitative properties of 𝐴. Two interesting quantitative properties of MA

are identified: (1) the minimum output value of an MA from an input of length 𝑘 and (2)

the average output value of an MA from all inputs of length 𝑘. A naive way to compute

the minimum or average output values of a given MA is to enumerate all inputs of length

𝑘 and compute the corresponding output. It is easy to see that the naive approach cannot

scale to a large 𝑘. So our goal is to develop more efficient algorithms to compute these

values. Assuming that the Analyzer receives an MA 𝐴	 = 	 (𝑀, 𝑏), where 𝑀	 = 	 {𝑀Z 	∈

ℝH×H	|𝑎 ∈ 𝛴} and 	Σ ⊂ ℕ ,from the Learner. It will transform 𝐴 to a multivariate

polynomial 𝑔I(𝑑K𝑑L ⋯𝑑I):	ℝ� 	→ 	ℝ that outputs the value of 𝐴(𝑑K𝑑L ⋯𝑑I) when

𝑑K𝑑L ⋯𝑑I ∈ ΣI.

The transformation is similar to the one in [4] using interpolation. It first computes

𝑝(𝑣), an 𝑛	×	𝑛 matrix of polynomials over the variable 𝑣, as follows.

𝑝(𝑣) 	= 					 (
𝑣 − 𝑏
𝑎 − 𝑏

�∈�\{Z}

𝑀Z)
Z∈�

Example 1. Consider the MA in Figure 1. We use 0, 1 to represent a, b,
respectively. Then 𝑝 𝑣 = ��K

��K
𝑀Z + ���

K��
𝑀� = [1 (1 − 𝑣)

0 1].

Observe that ∀𝑎	 ∈ 	𝛴 ∶ 	𝑝(𝑎) 	= 	𝑀𝑎. Then 𝑔𝑘(𝑣1, . . . , 𝑣𝑘) is defined as
𝑔𝑘(𝑣1, . . . , 𝑣𝑘) 	= 	 [𝑝(𝑣1)𝑝(𝑣2)	. . . 𝑝(𝑣𝑘)](K,∗)𝒃

It is easy to see that 𝑔I(𝑣K, . . . , 	𝑣I) is indeed a multivariate polynomial satisfying

all requirements specified above. In principle, standard calculus techniques can be applied

to analyze properties (such as optimal values or average) of the multivariate polynomial

doi:10.6342/NTU201701657

 13

𝑔I(𝑣K, . . . , 	𝑣I) . However, 𝑔I(𝑣K, . . . , 	𝑣I)contains many monomials with very large

rational coefficients. It takes a lot of time to compute the exact polynomial because all

those rational coefficients have to be computed symbolically. On the other hand,

approximating those rational coefficients using floating-point numbers gives very

inaccurate analysis results due to numerical errors. Although the multivariate polynomial

𝑔I represents A in theory, it is very costly to compute 𝑔I explicitly and hence is not

immediately useful in practice. Below we describe more practical approaches to compute

the minimum and average value of 𝑔I.

5.1 Computing the min. of 𝐠𝐤

The global optimization problem of multivariate polynomial is known to be very

difficult. It is already NP-hard when the degree is 4 [15]. Here we suggest to use the

gradient descent (GD) algorithm or any similar algorithm1 to find a local minimum of

𝑔I instead. Let 𝑉	 = 	 {𝑣B	|	𝑖	 ∈ 	 [𝑘]} . Intuitively, the GD algorithm begins with an

arbitrarily chosen initial assignment 𝜂 ∶ 	𝑉	 → 	ℝ. It searches in 𝑔I the direction from

𝜂 leading to the steepest downward gradient and picks another assignment by moving

from 𝜂 toward the chosen direction for a distance. The steeper the gradient is, the longer

the distance is. The algorithm repeats the above procedure to obtain better assignments.

It terminates when, e.g., the distance to move becomes very small, which indicates that

an assignment close to a local minimum is reached. Note that the GD algorithm does not

need the polynomial 𝑔I explicitly. It only requires the values of 𝑔I on the selected

assignments. Since 𝑔I(𝑑K, . . . , 𝑑I) 	= 	 [𝑝(𝑑K)𝑝(𝑑L)	. . . 𝑝(𝑑I)](K,∗)𝒃, we use the MA 𝐴

to compute the values of 𝑝 𝑑K , 𝑝 𝑑L , . . . , 𝑝(𝑑I) on given assignments. When the GD

algorithm is applied to our analysis, it begins with an arbitrarily chosen assignment from

doi:10.6342/NTU201701657

 14

𝑉 to the discrete domain 𝛴I. However, the GD algorithm may still find an assignment

𝜂� outside 𝛴I when it terminates. In this case, our procedure searches all

“neighboring” assignments to 𝜂� over 𝛴I and pick the one with the minimum

output w.r.t 𝑔I.

5.2 Computing the average of 𝒈𝒌

The average value can be obtained by computing the sum using the following

formula and then dividing it by |𝛴|I.

⋯ 𝑔I(𝑑K, . . . , 𝑑I)	
`�∈�`b∈�`a∈�

	

= ⋯ [𝑝(𝑑K)𝑝(𝑑L)	. . . 𝑝(𝑑I)](K,∗)𝑏
`�∈�`b∈�`a∈�

− (2)	

= 𝑝 𝑑K
`a∈�

𝑝 𝑑L
`b∈�

⋯ 𝑝 𝑑I
`�∈� (K,∗)

𝒃	

= 𝑀`
`a∈�

I

(K,∗)

𝒃 − (3)	

 In our implementation, we use a similar gradient-based algorithm, called sequential

quadratic programming (SQP) [7], implemented in the fmincon function of Matlab.

 Sometimes we are only interested in the average value w.r.t. a subset 𝑆 of 𝛴. Such

an average value can be computed by replacing 𝛴 in (3) with 𝑆 . Observe that the

computation of (2) is more expensive than (3). The former uses 𝑘|𝛴|I matrix product

operations, while the latter uses only 𝑘 product operations.

doi:10.6342/NTU201701657

 15

Chapter 6 Optimizations

In this section, approaches to address some practical limitations of our learning-

based algorithm are discussed.

6.1 Learning the alphabet symbols incrementally

Recall that the MA learning algorithm assumes a finite alphabet 𝛴. The assumption

does not hold for systems such as a website. We propose an adaption to the learning

algorithm to eliminate the assumption. The main idea is to incrementally build the

alphabet 𝛴 . Initially, we assume 𝛴	 = 	∅. The algorithm also works when 𝛴 is a

nonempty subset of system actions. If a word 𝜔 sampled according to 𝐷 contains new

symbols, i.e., 𝑠𝑦𝑚 𝑤 	𝑛𝑜𝑡 ⊆ 	𝛴, we reassign 𝛴 ∶= 	𝛴 ∪ 𝑠𝑦𝑚(𝜔) and use Step(I) of the

learning algorithm to rebuild Ah. The update of the alphabet Σ will eventually terminate,

provided that the distribution D is over words constructed from a finite alphabet. The

algorithm is obtained by modifying the Step(II) in Figure 2 to the one in Figure 5. Later

we will see in Section 8.1 that applying the optimization improves the overall

performance by roughly 10% even for systems where Σ can be predetermined.

Figure 5 The PAC learning algorithm for MA that does not require to know the alphabet

beforehand. It assumes the following additional input: a distribution D over words

doi:10.6342/NTU201701657

 16

constructed from an unknown finite alphabet, the parameters 0 < 𝜀, 𝛿 < 1 and the

initial value Σ = ∅.

6.2 Double check the learned min./max. value

Let 𝐴 be the MA inferred by the learning algorithm and 𝑓 ∶ 	𝛴 ∗	→ 	ℝ be an

unknown function representing the behavior of the system under analysis. Assume that

our approach finds a minimum value on 𝐴 with the input 𝜔 . Since 𝐴 is an

approximation of 𝑓, it can be the case that 𝐴(𝜔) ≠ 	𝑓(𝜔). Sometimes, a result of this

kind is mean- ingless, e.g., the result can be a negative amount of people. In such a case,

we suggest to return 𝜔 as a counterexample to the MA learning algorithm to refine the

conjecture further. The immediate benefit of the optimization is that we can guarantee

that the model and the system are consistent at the inferred minimum/maximum value.

doi:10.6342/NTU201701657

 17

Chapter 7 Running Example: Calculator

In this section, we demonstrate how our approach works using a simple but concrete

example, a “calculator” with numeral buttons 0 to 9 and operator buttons + and −. We

want to compute the average and maximal output values the calculator can produce with

an input of length 𝑘. Here a natural choice is to map each button to a symbol in [0, 11]

because we have 12 buttons in total. We use the mapping that buttons 0 to 9 are mapped

to the corresponding number in [0,9] and +,− are mapped to 10,11, respectively. We use

an underline to emphasize the segmentation of symbols, e.g., to distinguish 1 0 and 10. A

word in [0, 11] ∗ is evaluated in the same way as Matlab does. For example,

3	3	4	 = 	334, 3	10	4	 =7 (interpreted as 3+7), and 	1	10	11	2 (interpreted as

1+(−2)). Here 𝜔 is the evaluation of 𝜔 in Matlab. For an incomplete expression (e.g.,

the empty word 𝜆 or 10	11, which is interpreted as +−), its evaluation is 1.

The PAC-learning algorithm for MA requires a distribution over words in [0, 11] ∗

that will be used for sampling. We use the so-called monkey distribution with a stop

probability p. The distribution tries to simulate the behavior of a monkey playing a system.

The monkey has no preference on which button to push and hence each symbol is

assumed to have the same chance to be pushed. There is a probability p (checked after

each button pushing) that the monkey is bored and decides to stop pushing more buttons.

A similar idea has been used in software testing under the name “monkey testing”, which

is included as a stan- dard testing tool in Android Studio [1]. The monkey distribution can

be viewed as a generalization of the geometric distribution in probability theory to finite

words. The average length of word sampled by the monkey distribution is 1/𝑝 .

We demonstrate the first two iterations of applying the MA learning algorithm to learning

doi:10.6342/NTU201701657

 18

the calculator model in Figure 6 and 7. Assume the parameters (𝜀, 𝛿, 𝑝) 	=

	(0.05,0.9,0.2). On the left of Figure 6, we show the rows of 𝐹~	𝑤. 𝑟. 𝑡. 𝑋 and its one

step extension. These numbers are sufficient to establish all transition matrices and the

output vector. For example, now we have 𝑥K 	= 	𝜆, 𝑙	 = 	1 and consider the case 𝑎	 =

	9	and 𝑖	 = 	1, from the equation

9 = [𝐹~](v∙©,∗) = [𝑀Z](B,D)[𝐹~](tª,∗) =
D∈[�]

	

[𝑀©](K,D)[𝐹~](tª,∗) =
D∈[K]

[𝑀©](K,K)[𝐹~](v,∗) = [𝑀©](K,K) 1 ,	

Figure 6 Iteration 1

we can derive 𝑀© 	= 	 [9]. On the right of Figure 6, we show the first conjectured MA

𝐴za . The teacher returns the first counterexample 𝑐𝑒K = 6	8. Observe that 𝐴za(𝑐𝑒K) =

48 while 𝑓(𝑐𝑒K) = 	68 . By analyzing 𝑐𝑒K , we found its prefix 6	8 satisfies both

conditions stated in the step(II) of Figure 2 with 𝑦	 = 	𝜆 as follows.

(a) [𝐹~](¬,∗) 	= 	 [6] 	= 	 [𝑀¬](K,K)[𝐹~](v,∗) 	= 	 [𝑀¬](K,K)[𝐹~](v,∗)D∈[K]

doi:10.6342/NTU201701657

 19

(b) [𝐹~](¬	,v) 	= 	68	 ≠ 48 = [𝑀¬](K,K)[𝐹~](v∙,v) 	= 	 [𝑀¬](K,D)[𝐹~](tª∙,v)D∈[K]

Hence we add (6, 8) to (𝑋, 𝑌) and proceed to iteration 2. Similarly, on the left of

Figure 7, we show the rows of 𝐹~ w.r.t. 𝑋 and its one step extension. On the right of

Figure 7 we show the conjectured MA 𝐴zb . Due to space limit, we leave the details of

the construction of 𝐴zb in Appendix A.1. Still, 𝐴zb is incorrect evidenced by the

counterexample 𝑐𝑒L = 11	11. Observe that 𝐴zb 𝑐𝑒L = KL®
¯

 while 𝑓 𝑐𝑒L = 1.5. The

learning algorithm will analyze 𝑐𝑒L and extend the sets 𝑋 and 𝑌. It repeats the above

procedure until finds an MA 𝐴z that is 𝑃𝐴𝐶(𝜀, 𝛿). That is, with confidence 90%, if a

word w is sampled using the monkey distri- bution, the probability that 𝐴z(𝜔) ≠ 	𝑓(𝜔)

is less than 5%.

Figure 7 Iteration2

Notice that although the inferred MA 𝐴 has a statistical guarantee on the difference

to the behaviors of the calculator. The guarantee does not directly carry over to

doi:10.6342/NTU201701657

 20

quantitative properties of MA (such as the minimum and average) obtained using the

approaches introduced in Section 5. We can show that with confidence 90% the difference

in the average of words of length 4 between A and the actual calculator is bounded by

164.5% (check Appendix A.2 for details).

However, the bound is very loose and hence not that useful. Our experimental results

suggest that the quality of MA learned by the algorithm and the inferred quantitative

properties are much better than the worst case theoretical bound. In Table 1, we compare

the approximate average values obtained via learning and the exact values obtained

directly from the calculator.

Table 1 Comparing the approximate average computed via learning and the the exact
answer obtained directly from the calculator. The parameters (𝜀, 𝛿, 𝑝) = 	 (0.1, 0.9, 0.2).

Recall that the average sample length is 1/𝑝	 = 	5 . We compare the inferred

approximation with exact value on length up to 30. To make the result easier to verify, we

compute the average of words over the alphabet [0,9] 	⊂ 	 [0,11] , Recall that the

algorithm in Section 5 allows us to focus on a subset of [0, 11]. All words in [0, 9]I are

completed by Matlab expressions and we can easily compute by hand that the average of

a length 𝑘 word in [0, 9]I is 4.5	×	10I . Still, we want to emphasize that the learning

algorithm and also the inferred MA 𝐴 is over the complete alphabet [0, 11].

doi:10.6342/NTU201701657

 21

Chapter 8 Calculator Experiment

We first use the calculator example to perform an in-depth evaluation of our

approach from different aspects. For instance, we study the performance impact when the

incremental alphabet refinement optimization is turned on and off. We then examine the

generality of the proposed approach using three more examples: “operating system

scheduling”, “missionaries and cannibals”, and “amount of data transmission in a

website”. Our implementation is in Matlab and Perl.0

8.1 Calculator

Considerations on the choice of alphabet symbols. Observe that our mapping from

buttons to alphabet symbols keeps the natural order of the numeral but- tons. Below we

evaluate whether such a mapping is helpful to the performance of our approach. We call

the mapping we introduced before the natural map- ping. Here we define the random

mapping which assign randomly each button to a number in [0,11]. The result of the

experiment is in Table 2, which is the summary of 20 runs for each alphabet mapping.

The results in the row “Enumeration” is obtained by a brute-force enumeration of all

words w of length 5 and then computing the average of their evaluation in Matlab. The

column “#Mem. Queries” is partitioned into three parts: “HM”,“PAC”, and “CE”, which

denotes those for filling the HM, PAC-based sampling, and counterexample analysis,

respectively. However, based on our observation more than a half of the membership

queries are being used for filling the HM which is necessary for the learning process.

doi:10.6342/NTU201701657

 22

Table 2 Comparing the performance of natural and random alphabet mappings. The

parameters (𝜀, 𝛿, 𝑝) = 	 (0.2, 0.8, 0.1).

The analysis using the natural mapping is clearly more efficient than the one with

random mapping. We believe the reason is that it is easier for the learning algorithm to

find “regularity” when the mapping is natural. This is supported by the fact that the size

of the MA learned with the natural mapping is significantly smaller than the one with a

random mapping. The lesson learned here is that to use a natural mapping when it is

possible for the system under analysis.

8.2 Considerations on the choice of distribution

We evaluate the impact of choosing different distributions. Beside the monkey

distribution, we introduce the other two distributions. (a) A uniform distribution over all

words of length 5. (b) A uniform distribution over all words of length smaller than or

equals to 5. The average result of 20 runs of each distribution is in Table 3. We found that

our quantitative analysis is very stable w.r.t. the choice of sampling distributions. Observe

that a word of length longer than 5 will never be sampled using the two uniform

distributions, but the estimated values on length 7 are still very precise. We believe this

is due to the fact the MA learning algorithm is very good in generalizing the collected

samples. Note that the HM may still contain entries corresponding to words of length

longer than 5.

doi:10.6342/NTU201701657

 23

Table 3 Comparing the performance using different sampling distributions. (𝜀, 𝛿) =

	(0.2, 0.8). We use the random alphabet mapping.

8.3 Incremental alphabet refinement

We use a 10 min timeout period and the parameters (𝜀, 𝛿, 𝑝) 	= 	 (0.2,0.8,0.1) to

evaluate the performance difference of our approach when the incremental alphabet

refinement optimization is turned on and off. We execute 100 MA learning tasks for each

setting. If a task cannot be completed within the timeout period, we use 600 sec as its

execution time. The setting when the optimization is turned off has 20 timeouts and the

average execution time is 166.96 sec. The one with the optimization turned on has only

17 timeouts and the average execution time is 150.99 sec. Here we can see that the gain

in execution time with the optimization is roughly 10%.

8.4 Distribution of the execution time

We investigate the performance bottleneck of MA learning. The top 4 time-

consuming component are (1) filling the Hankel matrices, (2) building the transition

matrices, (3) processing PAC-based equiv- alence queries by sampling, and (4)

counterexample analysis. The results are presented in Table 4. We set the error rate to

almost zero so the learning al- gorithm will never terminate. The stop probability p is set

to 0.1. Beside the standard 12-button calculator, we also tried calculator with 22 and 42

doi:10.6342/NTU201701657

 24

buttons, i.e., with numeral button 0-19 and 0-39, respectively. We list the time spent in

iterations 10, 20 , 40, and 80. The result indicates that most of the time is spent in (1) and

hence should have the highest priority for further optimizations. For the 80-th iteration of

the case |𝛴| 	= 	12 , the time spent in PAC-equivalence query dominates the total

execution time. The reason is that the inferred MA is already very close to the actual

behavior of the calculator. So the teacher needs to sample and test a large number of words

before preceding to the next iteration. Also observe that if the time budget is one hour,

the learning algorithm can find an MA with more than 40 states even if the alphabet size

is 42.

Table 4 The time used in different steps of 𝑀𝐴 learning.

doi:10.6342/NTU201701657

 25

Chapter 9 Operating System Scheduling Experiment

An operating system (OS) on a uniprocessor machine maintains a queue of processes

that are ready to run. Depending on the scheduling policy, the OS may deactivate the

running process, insert it into the queue, and then remove some process p from the queue

and activate p for a certain time period. In this example, we assume the first come first

serve (FCFS) scheduling policy [18].

We are interested in the waiting time of a process (the total time period in which the

process is ready to run but not activated). We assume the maximal execution time is 10

time units for all processes and define a set of alphabet 𝛴	 = 	 [0, 10]. Basically, for a

word 𝜔 =	𝑎�𝑎K	. . . 𝑎�, the symbol 𝑎B indicates that at the 𝑖 − 𝑡ℎ	time unit (1) a new

process with execution time 𝑎B is arrived and ready to run if 𝑎B 	> 	0, or (2) no new

process arrived if 𝑎B 	= 	0. The output 𝑓(𝜔) is computed by simulating the OS under

the FCFS policy. Table 5 summaries the results of running the analysis 3 times. The result

is surprisingly promising; our analysis is as precise as the result obtained by enumerating

all words of length 𝑘.

Table 5 Performance on “Operating System Scheduling”. The parameters (𝜀, 𝛿, 𝑝) =

	(0.1, 0.9, 0.2). The row “Enumeration” is obtained by enumerating all words of length

𝑘.

doi:10.6342/NTU201701657

 26

Chapter 10 Missionaries and Cannibals Experiment

The missionaries and cannibals example is one of the classical river-crossing

problems. In our setting, 3 missionaries and 3 cannibals want to cross a river using a boat

under the following constraints: (1) the boat can carry at most 3 people; (2) at least one

people is required to row the boat; (3) if there are more cannibals than missionaries

present on a bank (or on a boat), then the cannibals will devour the missionaries. To

analyze the missionaries and cannibals example with MA, we define a set of alphabet

𝛴	 = 	 {(𝑖, 𝑗)	|	𝑖 + 𝑗	 ∈ 	 [3]} . For a word 𝑤	 = 	 (𝑖�, 𝑗�)(𝑖K, 	𝑗K)	. . . (𝑖�, 	𝑗�) , the symbol

(𝑖I, 	𝑗I) indicated that 𝑖I missionaries and 	𝑗I cannibals row the boat (1) from the

source bank to the destination bank if 𝑘 is even, or (2) in the other direction if 𝑘 is odd.

Our goal is to estimate the number of people on the destination bank at the 𝑘 − 𝑡ℎ step.

We encode the number of people on the destination bank in the power of 2. That is, 2H

denotes there are 𝑛 people on the destination bank. Then moving one person to the

destination bank becomes ×2 and removing one becomes ÷ 2.

Observe that by encoding the number of missionaries and cannibals at each bank and

the position of the boat as the states of an MA, one can obtain a deterministic MA that

precisely computes the number of people on the destination bank. Each alphabet symbol

will move the MA from one state to only one target state and update the number of people

on the destination bank accordingly using ×2 and ÷ 2 . The number of states are

bounded by 3¬	×	2. The boat has two positions and each person has at most three statuses:

at the source, at the destination, and being devoured. So we know that rank of the target

function is finite, although its value can be high.

Table 6 summaries the results of running the analysis 20 times. The output 𝑓(𝜔) is

doi:10.6342/NTU201701657

 27

computed by simulating the move of the boat according to 𝜔. In general, our method

produces a very precise estimation on the average output value. In this case, the maximum

value we obtained is only sub-optimal. We believe this might due to a special feature of

the example: once we made an incorrect step, some missionaries will be devoured and

there is no way to resurrect them. So the imprecision of the model will cause a huge

impact to the estimated maximum value. Similarly, we obtain the reference answer by

enumeration. We only have results up to length 7 because it takes more than 10 hours to

compute the reference answer when the length is 7.

Table 6 Performance on “Missionaries and Cannibals”. The parameters (𝜀, 𝛿, 𝑝) =
	 0.1, 0.9, 0.2 . The row “Enumeration” is obtained by enumerating all words of length
𝑘.

doi:10.6342/NTU201701657

 28

Chapter 11 Amount of Data Transmission in a Website

Average and worst-case response time are important measures of the performance

of a website. For static web pages, the response time is usually proportional to the size of

the page being transmitted. In the experiment, we estimate the average and maximum size

of data transmitted during 𝑘-page visits.

Define an initial set of alphabet 𝛴	 = 	 [2]. Basically, a symbol 𝑖	 ∈ 	𝛴 indicates the

𝑖 − 𝑡ℎ hyperlink in the current web page. A word 3	4	2 denotes the sequence of actions:

click the 3rd hyperlink in the first web page, the 4th hyperlink in the next web page, and

then the 2nd link in the last web page. Whenever a web page containing 𝑘 hyperlinks

with 𝑘	 > 	2 is detected during sampling, the alphabet is extended to [𝑘]. We use the

personal web-site of our colleague as the target to analyze. The result is presented in Table

7.

Table 7 Performance on the “Amount of Data Transmission in a Website” problem. The

parameters (𝜀, 𝛿, 𝑝) = 	 0.1, 0.9, 0.2 . Here the numbers are in byte and the size of

alphabet of the learned MA is 16.

We encountered a number of difficulties working on a realistic problem like this. For

example, the web server blocks our connection when we make too many requests within

a period of time. So we can only send one request per second to avoid being blocked.

Subsequently, a membership on a word of length n requires n requests to the website,

which costs at least n seconds. Therefore, here we can only offer the exact reference

doi:10.6342/NTU201701657

 29

answer for the case of length 3. We could not offer the reference answer of other lengths

because it would require months of time.

Summary

Our work is the first to apply an MA learning algorithm with a PAC guarantee to the

context of quantitative analysis. The encouraging experimental results suggest that our

approach has tremendous potential. Although the MA learn- ing algorithm terminates

only when the target function is of a finite rank, our approach can be applied even when

the rank of the target function is infinite. Observe that beside the example “missionaries

and cannibals”, we do not know if the the target function is of a finite or an infinite rank.

Currently, our tool can infer an MA model with 50 to 100 states within one hour, provided

that the size of alphabet is below 50. Our implementation is in Matlab and Perl. We

believe its performance can be improved using a more efficient programming language.

doi:10.6342/NTU201701657

 30

REFERENCE

1. Android Studio: the Monkey tester. https://developer.android.com/studio/

test/monkey.html (2017) Accessed: 2017-01-08.

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information and

Computation 75(2) (1987) 87–106

3. Angluin, D.: Queries and concept learning. Machine Learning 2(4) (1988) 319–342

4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning

functions represented as multiplicity automata. JACM 47(3) (2000) 506–530

5. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity and

equivalence queries. SIAM J. Comput. 25(6) (1996) 1268–1280

6. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Volume 12 of EATCS

Monographs. Springer (1988)

7. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numerica 4 (1995)

1–51

8. Carlyle, J., Paz, A.: Realizations by stochastic finite automata. Journal of Com- puter

and System Sciences 5(1) (1971) 26–40

9. Chen, Y.F., Hsieh, C., Lengál, O., Lii, T.J., Tsai, M.H., Wang, B.Y., Wang, F.: PAC

learning-based verification and model synthesis. In: ICSE. (2016) 714–724

10. Fliess, M.: Matrices de Hankel. J. Math. Pures Appl 53(9) (1974) 197–222

11. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning

and approximation. JACM 45(4) (1998) 653–750

doi:10.6342/NTU201701657

 31

12. Herd, B., Miles, S., McBurney, P., Luck, M.: Quantitative analysis of multiagent

systems through statistical model checking. In: Engineering Multi-Agent Systems. (2015)

109–130

13. Kwiatkowska, M.: Quantitative verification: Models, techniques and tools. In:

ESEC/FSE, ACM (2007) 449–458

14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:

RV. (2010) 122–135

15. Nesterov, Y.: Squared functional systems and optimization problems. In: High

Performance Optimization. (2000) 405–440

16. Ohnishi, H., Seki, H., Kasami, T.: A polynomial time learning algorithm for rec-

ognizable series. IEICE Transactions on Information and Systems 77(10) (1994) 1077–

1085

17. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-

abilistic systems. In: CAV. (2004) 202–215

18. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. 8th edn. Wiley

Publishing (2008)

19. Valiant, L.G.: A theory of the learnable. CACM 27(11) (1984) 1134–1142

20. Walkinshaw, N.: Assessing test adequacy for black-box systems without specifica-

tions. In: ICTSS. (2011) 209–224

21. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with

application to Stateflow/Simulink verification. FMSD 43(2) (2013) 338–367

