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中文摘要 

此篇論文應用機率近似模型學習演算法學習多樣性自動機。該演算法會

產生目標軟體之多樣性自動機模型，並將其應用於量化分析。使用產生之多樣

性自動機模型，我們設計了一系列演算法可以預測軟體量化分析目標軟體的

最大值與平均值等特性。此外，我們修改該演算法，使其在輸入字母數量並非

固定時也可以通用。在此片論文中我們實際測試了五種不同類型的軟體，實驗

證明我們預測的結果與暴力法算得之結果相當接近，足以證明此演算法可以

產生一些傳統難以預測的數據，並具有相當高的可信度。 

 

關鍵字：機率近似正確、機器學習、多樣性自動機、量化分析 
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ABSTRACT 

In this paper, we apply a probably approximately correct (PAC) learning algorithm 

for multiplicity automata which can generate a quantitative model of target system 

behaviors with a statistical guarantee. By using the generated multiplicity automata model, 

we apply two analysis algorithms to estimate the minimum, maximum and average values 

of system behaviors. Also, we demonstrate how to apply the learning algorithm when the 

alphabet symbol size is not fixed. The result of the experiment is encouraging; Our 

approach made the estimation which is as precise as the exact reference answer obtains 

by a brute force enumeration. 

 

 

Keywords: probably approximately correct, machine learning, quantitative analysis, 

multiplicity automata 
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Chapter 1 Introduction 

1.1 Motivation 

When software developed, limited resources such as time and space are crucial in 

the stage od system evaluation. Quantitative analysis of system behaviors gradually has 

become a consequential research issue recently [12,13]. Normally, models are required to 

describe system behaviors when conducting analysis. Quantitative model construction, 

however, can be as hard as the analysis itself. Consider analyzing the amount of data 

transmission in web browsing. When users click on hyperlinks, new pages are generated 

and sent from servers through Internet. Suppose we want to estimate the average amount 

of data transmission from one website over 𝑘 hyperlink clicks. In most cases, the first 

thing to do is to construct a system model with a suitable abstraction. However, it is not 

immediate clear how to construct an abstract quantitative model for such system 

behaviors systematically and, even automatically. 

We apply a probably approximately correct (PAC) learning algorithm which is 

design for multiplicity automata to generate abstract models for quantitative analysis of 

system behaviors. Multiplicity automata are the class of weighted automata over the semi-

ring (ℝ,+,×, 0, 1) . We also model system behaviors by words in the alphabet of a 

multiplicity automaton. The quantity, such as the amount of data transmission, associated 

with the system behavior is hence the result of the automaton on the input word. Through 

a teacher who simulates the system on certain input and measures the quantity of interest, 

the learning algorithm cab generate a multiplicity automaton as an approximation to 

quantitative system behaviors with a statistical guarantee. 
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Unlike most applications in verification and software testing, we, in this paper, do 

not aim for exact quantitative models of system behaviors but the approximations. For 

quantitative analysis, quantities of system behaviors, such as response time, distance to a 

target, heat generation, and energy consumption, are often measured with equipment and 

hence imprecise. Inferring exact quantitative models is not very meaningful with the 

existence of measurement errors. Moreover, exact learning is impossible when the target 

software cannot be characterized mechanically or expressed by the model in use. On the 

other hand, approximate quantitative models may suffice for certain quantitative analyses 

such as average response time, medium power consumption. Exact models are hence not 

necessary for such circumstances even if they are attainable. 

After a multiplicity automaton is generated, we demonstrate how to analyze the 

maximum and average values of system behaviors with a fixed length 𝑘 in Section 5. 

The transitions of a multiplicity automaton with the alphabet of size 𝑛  can be 

represented by a matrix form whose entries are polynomials of degree 𝑛. For behaviors 

of length 𝑘, they can also be represented by a multivariate polynomial of degree 𝑘𝑛. The 

polynomial enables us to conduct a variety of quantitative analysis with standard 

mathematical tools. For example, we can calculate the maximum amount of data 

transmission for 𝑘  hyperlink clicks in web browsing by gradient descent, genetic 

algorithms, simulated annealing or other local maxima searching methods. 

Several practical issues on applying learning to quantitative analysis are addressed 

in Section 6. The previous algorithm [2] assumes a fixed alphabet symbol size. In the real 

world, the alphabet may not be known in advance. We demonstrate an algorithm which 

increment the alphabet symbol size when necessary. Besides, note that the generated 

quantitative model is an approximation, some meaningless values, such as a negative 
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amount of data transmission, on certain behaviors might exist due to its inaccuracy. In 

this paper, we give some amendments to prevent those meaningless analysis results. 

The approach that we presented in this paper has several advantages. For instance, 

once the mapping between words and system behaviors has been decided, our approach 

runs fully automatically. After the quantitative models are generated, different analyses 

can be computed on them without further simulation. For example, suppose we aim to 

analyze the average amount of data transmission for 1,… , 𝑘 hyperlink clicks from the 

home page. These 𝑘 analyses can all be counted by the same inferred approximate model. 

The quantitative model can also be reused for other types of analyses or applications, such 

as the maximum amount of data transmission. The experiment results in Section 8 

suppose that the estimation obtained by our learning-based approach is almost as accurate 

as the exact reference answer produced by a brute-force enumeration. 

1.2 Related Work 

Exact learning algorithms for classical automata was first proposed by Dana Angluin 

[2]. The result has been generalized to the class of multiplicity automata in [5,6]. Also, 

the concept of probably approximately correct (PAC) learning was first designed by 

Valian in [19]. The idea of transform an exact learning algorithm to a probably 

approximately correct (PAC) learning algorithm was presented in [3]. 

PAC learning has been applied to software testing and verification [20,11,9]. The 

work in [20] consider the problem from a theoretical aspect. It focuses on issues related 

to the lower bound on the number of required queries to generate a system model. The 

work in [11] tests if the output of a graph-manipulating program is bipartite, 𝑘 -

colorable…etc. The paper of [9] apply PAC-learning to generate a model of a computer 
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software and then verify if any assertion or test case violation can occur in the automata 

model. To the best of our knowledge, PAC-learning techniques have not been applied to 

generate quantitative models of software system before. Both out approach presented and 

statistical model checking [17,14,21] provide a statistical guarantee. Statistical model 

checking suppose a given model exist while our inferred models with a statistical 

guarantee. The generated models are reusable for different properties. 

1.3 Contribution 

The contributions of our works are as bellowed. 

(a) A framework that automatically generates quantitative models from learning with 

statistical guarantee. 

(b) Effective and Efficient algorithm designed to check useful quantitative properties 

of multiplicity automata. 

(c) Down to detail analysis of the capacity of the learning algorithm when applied to 

quantitative models’ construction and suggestion on effective optimizations. 
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Chapter 2 Preliminaries 

In this paper, we assume ℕ is the set of natural numbers. Matrices and vectors are 

all over the field of real number ℝ. For a Matrix 𝑀, 𝑀 (B,∗) is the 𝑖-th row of 𝑀 and 

𝑀 (B,D) is the entry at row 𝑖 and column 𝑗. For vector 𝒖, 𝒖(𝑖) is its 𝑖-th entry. In this 

paper, we suppose all vectors are column vectors. We use ℝG×H and ℝI to denote the 

sets of matrices of size 𝑚×𝑛 and column vectors of size 𝑘, respectively. The product of 

two matrices 𝑀K , 	𝑀L  is denoted as 𝑀K𝑀L  and the product of 𝑘  copies of 𝑀  is 

denoted as 𝑀I . We use 𝑎, 𝑏, 𝑐, 𝑑  to denote symbols, 𝑤, 𝑥, 𝑦 to denote words, 𝜆 to 

denote the empty word, and v to denote variables. The concatenation of two words 𝑥, 𝑦 

is denoted as 𝑥 ∙ 𝑦. The set of integers 𝑘	|	𝑚 ≤ 𝑘 ≤ 𝑛  is denoted as [𝑚, 𝑛] and [𝑛] 

is a shorthand for [1, 𝑛]. 

2.1 Multiplicity Automata 

A multiplicity automaton (MA) 𝐴 = (𝑀, 𝑏)  over a finite alphabet ∑  is rep- 

resented as a set of transition matrices 𝑀 = 𝑀Z ∈ ℝH×H|𝑎 ∈ ∑  (one matrix for each 

symbol in ∑) and an output vector 𝒃 ∈ ℝH. The output of an MA 𝐴 cor- responding to 

a word ω＝𝑑K𝑑L ⋯𝑑G ∈ ∑_  is 𝐴 ω = [𝑀`a𝑀`b ⋯𝑀`c](K,∗)𝒃 and 𝐴(𝜆) 	= 	𝑏(1). 

Intuitively, the entry [𝑀Z](B,D) the weight of the transition from state qi to qj with symbol 

a and 𝒃(𝑖) is the weight of the state 𝑞B. The initial state is 𝑞K. The output of an MA w.r.t. 

a word w is the sum of the weight of all runs (sequences of transitions) corresponding to 

ω, where the weight of a run is the product of the weights of the last state and all 

transitions in the run. An example of an MA from the view of a set of matrices and also 

the view of a labeled state-transition system is given in Figure 1. 
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Figure 1 An 𝑀𝐴 computes the number of occurrences of symbol 𝑎 

2.2 Hankel Matrix 

The Hankel matrix (HM) of a function 𝑓 ∶ 	𝛴 ∗	→ ℝ	 is an infinite matrix F indexed 

with words from Σ ∗ such that [𝐹](j,k) 	= 	𝑓(x	 · 	y). Let 𝑓 ∶ 	𝛴 ∗	→ ℝ	 be a function 

with the corresponding HM F. For short, we use the rank of 𝑓, denoted rank (𝑓), to 

mean the rank of 𝐹. We say an MA 𝐴 is equivalent to 𝑓	iff	∀𝑤 ∈ 𝛴 ∗∶ 𝐴(𝑤) = 𝑓(𝑤). 

It has been shown in [8,10] that if 𝑟 = 𝑟𝑎𝑛𝑘(𝑓 ) is finite then the smallest MA 𝐴 

equivalent to 𝑓 has 𝑟 states. More concretely, let [𝐹](ta,∗), [𝐹](tb,∗), . . . , [𝐹](tu,∗) be 𝑟 

independent rows of 𝐹  with 𝑥K 	= 	𝜆 . One can construct an equivalent MA 𝐴	 =

	(𝑀, 𝑏) from F as follows. The output vector b is [𝐹](ta,v), [𝐹](tb,v), . . . , [𝐹](tu,v). The 

transition matrices Ma ∈ M can be obtained by solving the following equation for each 

𝑎	 ∈ 	𝛴, 𝑖	 ∈ 	 [𝑟]:  

[𝐹](tB·Z,∗) 	= 	 [𝑀Z](B,D)D∈[x] [𝐹](tD,∗) .		− 		 (1)  

Intuitively, Equation (1) states that the weight from the state represented by the word 𝑥B 	 ·

	𝑎 to any state 𝑞 is equivalent to the sum of the weights from state 𝑞B to state 𝑞D via 

the symbol a multiplies the weight from qj to q for all 𝑗	 ∈ 	 [𝑟]. 
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Chapter 3 Learning Algorithm of MA 

Now we have all the building blocks required to describe the learning algorithm for 

MA proposed by Beimel et al. [4], under the minimal adequate teacher (MAT) model by 

Angluin [2]. The MAT model assumes the existence of a teacher an- swering two types 

of queries about a function 𝑓 ∶ 	𝛴 ∗	→ ℝ: (a) On membership queries of a word ω, 

denoted Mem(w), the teacher replies 𝑓(ω). (b) On equivalence queries of an MA 𝐴z, 

denoted 𝐸𝑞𝑢(𝐴z), the teacher replies true when 𝐴 is equivalent to 𝑓. Otherwise, it 

replies false accompanying with a word ω s.t. 𝐴z(ω) ≠ 𝑓(ω). Let F be the HM of the 

target function 𝑓. When 𝑟	 = 	𝑟𝑎𝑛𝑘(𝑓) is finite, it is sufficient to characterize f using 

an 𝑟	×	𝑟	sub-matrix of 𝐹 (with rank 𝑟) [4]. The learning algorithm (in Figure 2) tries to 

find such an 𝑟	×	𝑟 matrix. Assume that the rank of the target function 𝑓 is finite and let 

𝑟	 = 	𝑟𝑎𝑛𝑘(𝑓).  For the MA learning algorithm in Figure 2, the content [𝐹~](t,∗) , 

[𝐹~](t∙Z,∗)  can be obtained by 𝑟(𝑟	 + 	𝑟|𝛴|) membership queries. The existence of a 

prefix satisfying conditions (a) and (b) is guaranteed by Claim 3.1 of [4] and it takes only 

polynomially many membership queries to find such a prefix. Observe that adding 𝑦� +

1 to 𝑌 is sufficient to make the row of 𝑥� + 1 independent with all other rows in 𝑋. 

The learning algorithm will find an MA with r states that is equivalent to f in r iterations. 

3.1 PAC Learning 

The MA learning algorithm assumes a teacher who can answer equivalence queries. 

This assumption is invalid in many practical settings. Angluin [3] showed that even if we 

substitute equivalence testing with sampling, we can still make statistical claims about 

the difference between the target and inferred model. 
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Assume the target function for MA learning is 𝑓 ∶ 	𝛴 ∗	→ ℝ  and a probability 

distribution 𝐷 over 𝛴 ∗ is given. We use 𝜑(ω) to denote that the inferred MA Ah and 

f are consistent on ω, i.e., 𝐴z(ω) 	= 	𝑓(ω). The term 𝑃𝑟𝑜𝑏�⇐�[¬𝜑(ω)] denotes the 

probability that 𝜑(ω) is false for w chosen randomly according to 𝐷. For a hypothesis 

of the form 

𝐻 ∶ 	𝑃𝑟𝑜𝑏�⇐�[¬𝜑(𝜔)] 	≤ 	𝜀 

The algorithm that we presented in this paper is as in Figure 2.

Figure 2 The learning algorithm for 𝑀𝐴 

We call ε the error parameter and use confidence to denote the least probability that 

the hypothesis H is correct. We say that an inferred MA is probably approximately correct 

(PAC) [19] w.r.t. 𝜀 and 𝛿, denoted 𝑃𝐴𝐶(𝜀, 𝛿), if 𝐻 holds with confidence 𝛿. In the 

example of estimating the amount of data transmission, 𝑓(ω) denotes the actual amount 

of data transmission with the input ω and 𝐴z is the inferred MA. Consider the uniform 
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distribution 𝐷I  over all words of length 𝑘  and (𝜀, 𝛿) 	= 	 (0.1, 0.9). We say 𝐴z  is 

𝑃𝐴𝐶	(𝜀, 𝛿) if with probability at least 90%, the probability that 𝑓(ω) and 𝐴z(ω) are 

different is bounded by 10% when ω is chosen uniformly from words of length 𝑘. The 

task of an equivalence query 𝐸𝑞𝑢(𝐴z) is changed from checking exact equivalence to 

checking approximate equivalence. More concretely, Step(II) in Figure 2 is replaced with 

the one in Figure 3. 

Figure 3 Replacing equivalence query with sampling. It assumes the following additional 

input: a distribution 𝐷 over Σ∗, the parameters 0	 < 	𝜀, 𝛿 < 1. 

The teacher answers the i-th equivalence query by picking ni samples accord- ing to 

D and testing if 𝐴z(ω) 	= 	𝑓(ω) for all samples ω. The number of samples 𝑛B needed 

to establish that Ah is 𝑃𝐴𝐶	(𝜀, 𝛿) is given by Angluin in [3]. Note that the target function 

f is not necessary of a finite rank. When f is of an infinite rank, the learning algorithm can 

still infer an MA 𝐴 approximating 𝑓 with a statistical guarantee. 
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Chapter 4 Overview 

The picture shown in Fig. 4 is the abstraction of the learning algorithm.  

 

Figure 4 Overview 

The learning algorithm for MA will be applied to construct a quantitative model of 

system behaviors. Fix an alphabet 𝛴  for system actions. Assume that the system 

behavior on ω	 ∈ 	𝛴 ∗ can be modeled by the quantity 𝑓(ω) 	∈ 	ℝ for some unknown 

𝑓 ∶ 	𝛴 ∗	→ ℝ. Figure 4 gives an overview of our framework. In the figure, the Teacher 

measures the quantity 𝑓(ω) by simulating the system on w. On a membership query 

𝑀𝑒𝑚(ω) , the Teacher answers the query by measuring the quantity 𝑓(ω) . On an 

equivalence query 𝐸𝑞𝑢(𝐴z), the Teacher checks if 𝐴z(ω) and the measured quantity 

𝑓(ω) coincide on a number of randomly chosen ω. If so, the Teacher concludes that the 

MA 𝐴z represents the unknown function 𝑓 with a statistical guarantee and the Learner 

will pass 𝐴z  to the Analyzer for further analysis. Otherwise, the Teacher returns 𝑤� 

with 𝐴z(𝑤�) ≠ 	𝑓(𝑤�) . Once an approximation 𝐴  to the unknown function 𝑓  is 

obtained from the Learner, the Analyzer transforms 𝐴  to a multivariant polynomial 

𝑔I(𝑑K𝑑L ⋯𝑑I ∈ ΣI)  which computes 𝐴(𝑑K𝑑L ⋯𝑑I)  for any 𝑑K𝑑L ⋯𝑑I ∈ ΣI . The 

transformation to the polynomial form allows us to perform various quantitative analyses 
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using powerful mathematical tools. Particularly, we are interested in the minimum and 

average of system behaviors on inputs of length 𝑘. Section 5 explains how to analyze 

such properties based on the polynomial 𝑔I. Limitations of the learning algorithm are 

found during our case studies. The learning algorithm presumes a fixed alphabet. The 

alphabet, however, is not predetermined when we analyze the average amount of data 

transmission from a website. In the example, the number of hyperlinks per page (the size 

of alphabet) is not known a priori. Moreover, recall that the inferred MA 𝐴  is an 

approximation to the unknown function 𝑓. When 𝐴 is used to compute the minimum of 

𝑓, the result can be a value that is not a possible outcome of the system under analysis. 

For instance, a negative minimum waiting time may be computed from 𝐴. We develop 

approaches to address those practical limitations in Section 6. In Section 7 and 8, four 

examples are used to showcase how to design effective Teachers and evaluate the 

performance of the proposed approach. The experimental results suggest that the 

estimation made by our approach is very precise; it is very close to the exact reference 

answer obtained by enumeration. 
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Chapter 5 Analyzing Properties of MA 

When the learning algorithm finds an MA 𝐴 for the target system, the next step is 

to analyze the quantitative properties of 𝐴. Two interesting quantitative properties of MA 

are identified: (1) the minimum output value of an MA from an input of length 𝑘 and (2) 

the average output value of an MA from all inputs of length 𝑘. A naive way to compute 

the minimum or average output values of a given MA is to enumerate all inputs of length 

𝑘 and compute the corresponding output. It is easy to see that the naive approach cannot 

scale to a large 𝑘. So our goal is to develop more efficient algorithms to compute these 

values. Assuming that the Analyzer receives an MA 𝐴	 = 	 (𝑀, 𝑏), where 𝑀	 = 	 {𝑀Z 	∈

ℝH×H	|𝑎 ∈ 𝛴} and 	Σ ⊂ ℕ ,from the Learner. It will transform 𝐴  to a multivariate 

polynomial 𝑔I(𝑑K𝑑L ⋯𝑑I):	ℝ� 	→ 	ℝ that outputs the value of 𝐴(𝑑K𝑑L ⋯𝑑I) when 

𝑑K𝑑L ⋯𝑑I ∈ ΣI.  

The transformation is similar to the one in [4] using interpolation. It first computes 

𝑝(𝑣), an 𝑛	×	𝑛 matrix of polynomials over the variable 𝑣, as follows. 

𝑝(𝑣) 	= 					 (
𝑣 − 𝑏
𝑎 − 𝑏

�∈�\{Z}

𝑀Z)
Z∈�

 

Example 1. Consider the MA in Figure 1. We use 0, 1 to represent a, b, 
respectively. Then 𝑝 𝑣 = ��K

��K
𝑀Z + ���

K��
𝑀� = [1 (1 − 𝑣)

0 1 ]. 

Observe that ∀𝑎	 ∈ 	𝛴 ∶ 	𝑝(𝑎) 	= 	𝑀𝑎. Then 𝑔𝑘(𝑣1, . . . , 𝑣𝑘) is defined as 
𝑔𝑘(𝑣1, . . . , 𝑣𝑘) 	= 	 [𝑝(𝑣1)𝑝(𝑣2)	. . . 𝑝(𝑣𝑘)](K,∗)𝒃  

It is easy to see that 𝑔I(𝑣K, . . . , 	𝑣I) is indeed a multivariate polynomial satisfying 

all requirements specified above. In principle, standard calculus techniques can be applied 

to analyze properties (such as optimal values or average) of the multivariate polynomial 
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𝑔I(𝑣K, . . . , 	𝑣I) . However, 𝑔I(𝑣K, . . . , 	𝑣I)contains many monomials with very large 

rational coefficients. It takes a lot of time to compute the exact polynomial because all 

those rational coefficients have to be computed symbolically. On the other hand, 

approximating those rational coefficients using floating-point numbers gives very 

inaccurate analysis results due to numerical errors. Although the multivariate polynomial 

𝑔I represents A in theory, it is very costly to compute 𝑔I explicitly and hence is not 

immediately useful in practice. Below we describe more practical approaches to compute 

the minimum and average value of 𝑔I. 

5.1 Computing the min. of 𝐠𝐤 

The global optimization problem of multivariate polynomial is known to be very 

difficult. It is already NP-hard when the degree is 4 [15]. Here we suggest to use the 

gradient descent (GD) algorithm or any similar algorithm1 to find a local minimum of 

𝑔I  instead. Let 𝑉	 = 	 {𝑣B	|	𝑖	 ∈ 	 [𝑘]} . Intuitively, the GD algorithm begins with an 

arbitrarily chosen initial assignment 𝜂 ∶ 	𝑉	 → 	ℝ. It searches in 𝑔I the direction from 

𝜂 leading to the steepest downward gradient and picks another assignment by moving 

from 𝜂 toward the chosen direction for a distance. The steeper the gradient is, the longer 

the distance is. The algorithm repeats the above procedure to obtain better assignments. 

It terminates when, e.g., the distance to move becomes very small, which indicates that 

an assignment close to a local minimum is reached. Note that the GD algorithm does not 

need the polynomial 𝑔I  explicitly. It only requires the values of 𝑔I  on the selected 

assignments. Since 𝑔I(𝑑K, . . . , 𝑑I) 	= 	 [𝑝(𝑑K)𝑝(𝑑L)	. . . 𝑝(𝑑I)](K,∗)𝒃, we use the MA 𝐴 

to compute the values of 𝑝 𝑑K , 𝑝 𝑑L , . . . , 𝑝(𝑑I) on given assignments. When the GD 

algorithm is applied to our analysis, it begins with an arbitrarily chosen assignment from 
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𝑉 to the discrete domain 𝛴I. However, the GD algorithm may still find an assignment 

𝜂�  outside 𝛴I  when it terminates. In this case, our procedure searches all 

“neighboring”  assignments to 𝜂�  over 𝛴I  and pick the one with the minimum 

output w.r.t 𝑔I.  

5.2 Computing the average of 𝒈𝒌 

The average value can be obtained by computing the sum using the following 

formula and then dividing it by |𝛴|I. 

⋯ 𝑔I(𝑑K, . . . , 𝑑I)	
`�∈�`b∈�`a∈�

	

= ⋯ [𝑝(𝑑K)𝑝(𝑑L)	. . . 𝑝(𝑑I)](K,∗)𝑏
`�∈�`b∈�`a∈�

− (2)	

= 𝑝 𝑑K
`a∈�

𝑝 𝑑L
`b∈�

⋯ 𝑝 𝑑I
`�∈� (K,∗)

𝒃	

= 𝑀`
`a∈�

I

(K,∗)

𝒃 − (3)	

 In our implementation, we use a similar gradient-based algorithm, called sequential 

quadratic programming (SQP) [7], implemented in the fmincon function of Matlab. 

 Sometimes we are only interested in the average value w.r.t. a subset 𝑆 of 𝛴. Such 

an average value can be computed by replacing 𝛴  in (3) with 𝑆 . Observe that the 

computation of (2) is more expensive than (3). The former uses 𝑘|𝛴|I matrix product 

operations, while the latter uses only 𝑘 product operations. 
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Chapter 6 Optimizations 

In this section, approaches to address some practical limitations of our learning- 

based algorithm are discussed. 

6.1 Learning the alphabet symbols incrementally 

Recall that the MA learning algorithm assumes a finite alphabet 𝛴. The assumption 

does not hold for systems such as a website. We propose an adaption to the learning 

algorithm to eliminate the assumption. The main idea is to incrementally build the 

alphabet 𝛴 . Initially, we assume 𝛴	 = 	∅.  The algorithm also works when 𝛴  is a 

nonempty subset of system actions. If a word 𝜔 sampled according to 𝐷 contains new 

symbols, i.e., 𝑠𝑦𝑚 𝑤 	𝑛𝑜𝑡 ⊆ 	𝛴, we reassign 𝛴 ∶= 	𝛴 ∪ 𝑠𝑦𝑚(𝜔) and use Step(I) of the 

learning algorithm to rebuild Ah. The update of the alphabet Σ will eventually terminate, 

provided that the distribution D is over words constructed from a finite alphabet. The 

algorithm is obtained by modifying the Step(II) in Figure 2 to the one in Figure 5. Later 

we will see in Section 8.1 that applying the optimization improves the overall 

performance by roughly 10% even for systems where Σ can be predetermined. 

Figure 5 The PAC learning algorithm for MA that does not require to know the alphabet 

beforehand. It assumes the following additional input: a distribution D over words 
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constructed from an unknown finite alphabet, the parameters 0 < 𝜀, 𝛿 < 1 and the 

initial value Σ = ∅. 

6.2 Double check the learned min./max. value 

Let 𝐴  be the MA inferred by the learning algorithm and 𝑓 ∶ 	𝛴 ∗	→ 	ℝ  be an 

unknown function representing the behavior of the system under analysis. Assume that 

our approach finds a minimum value on 𝐴  with the input 𝜔 . Since 𝐴  is an 

approximation of 𝑓, it can be the case that 𝐴(𝜔) ≠ 	𝑓(𝜔). Sometimes, a result of this 

kind is mean- ingless, e.g., the result can be a negative amount of people. In such a case, 

we suggest to return 𝜔 as a counterexample to the MA learning algorithm to refine the 

conjecture further. The immediate benefit of the optimization is that we can guarantee 

that the model and the system are consistent at the inferred minimum/maximum value. 
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Chapter 7 Running Example: Calculator 

In this section, we demonstrate how our approach works using a simple but concrete 

example, a “calculator” with numeral buttons 0 to 9 and operator buttons + and −. We 

want to compute the average and maximal output values the calculator can produce with 

an input of length 𝑘. Here a natural choice is to map each button to a symbol in [0, 11] 

because we have 12 buttons in total. We use the mapping that buttons 0 to 9 are mapped 

to the corresponding number in [0,9] and +,− are mapped to 10,11, respectively. We use 

an underline to emphasize the segmentation of symbols, e.g., to distinguish 1 0 and 10. A 

word in [0, 11] ∗  is evaluated in the same way as Matlab does. For example,  

3	3	4	 = 	334,  3	10	4	 =7 (interpreted as 3+7), and  	1	10	11	2  (interpreted as 

1+(−2)). Here 𝜔  is the evaluation of 𝜔 in Matlab. For an incomplete expression (e.g., 

the empty word 𝜆 or 10	11, which is interpreted as +−), its evaluation is 1.  

The PAC-learning algorithm for MA requires a distribution over words in [0, 11] ∗ 

that will be used for sampling. We use the so-called monkey distribution with a stop 

probability p. The distribution tries to simulate the behavior of a monkey playing a system. 

The monkey has no preference on which button to push and hence each symbol is 

assumed to have the same chance to be pushed. There is a probability p (checked after 

each button pushing) that the monkey is bored and decides to stop pushing more buttons. 

A similar idea has been used in software testing under the name “monkey testing”, which 

is included as a stan- dard testing tool in Android Studio [1]. The monkey distribution can 

be viewed as a generalization of the geometric distribution in probability theory to finite 

words. The average length of word sampled by the monkey distribution is 1/𝑝 .                

We demonstrate the first two iterations of applying the MA learning algorithm to learning 
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the calculator model in Figure 6 and 7. Assume the parameters (𝜀, 𝛿, 𝑝) 	=

	(0.05,0.9,0.2). On the left of Figure 6, we show the rows of 𝐹~	𝑤. 𝑟. 𝑡. 𝑋 and its one 

step extension. These numbers are sufficient to establish all transition matrices and the 

output vector. For example, now we have 𝑥K 	= 	𝜆, 𝑙	 = 	1 and consider the case 𝑎	 =

	9	and 𝑖	 = 	1, from the equation 

9 = [𝐹~](v∙©,∗) = [𝑀Z](B,D)[𝐹~](tª,∗) =
D∈[�]

	

[𝑀©](K,D)[𝐹~](tª,∗) =
D∈[K]

[𝑀©](K,K)[𝐹~](v,∗) = [𝑀©](K,K) 1 ,	

 

Figure 6 Iteration 1 

we can derive 𝑀© 	= 	 [9]. On the right of Figure 6, we show the first conjectured MA 

𝐴za . The teacher returns the first counterexample 𝑐𝑒K = 6	8. Observe that 𝐴za(𝑐𝑒K) = 

48 while 𝑓(𝑐𝑒K) = 	68 . By analyzing 𝑐𝑒K , we found its prefix 6	8  satisfies both 

conditions stated in the step(II) of Figure 2 with 𝑦	 = 	𝜆 as follows. 

(a) [𝐹~	](¬,∗) 	= 	 [6] 	= 	 [𝑀¬](K,K)[𝐹~	](v,∗) 	= 	 [𝑀¬](K,K)[𝐹~	](v,∗)D∈[K]   
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(b) [𝐹~	](¬	,v) 	= 	68	 ≠ 48 = [𝑀¬](K,K)[𝐹~	](v∙,v) 	= 	 [𝑀¬](K,D)[𝐹~	](tª∙,v)D∈[K]  

Hence we add (6, 8) to (𝑋, 𝑌) and proceed to iteration 2. Similarly, on the left of 

Figure 7, we show the rows of 𝐹~ w.r.t. 𝑋 and its one step extension. On the right of 

Figure 7 we show the conjectured MA 𝐴zb . Due to space limit, we leave the details of 

the construction of 𝐴zb  in Appendix A.1. Still, 𝐴zb  is incorrect evidenced by the 

counterexample 𝑐𝑒L = 11	11. Observe that 𝐴zb 𝑐𝑒L = KL®
¯

 while 𝑓 𝑐𝑒L = 1.5. The 

learning algorithm will analyze 𝑐𝑒L and extend the sets 𝑋 and 𝑌. It repeats the above 

procedure until finds an MA 𝐴z that is 𝑃𝐴𝐶(𝜀, 𝛿). That is, with confidence 90%, if a 

word w is sampled using the monkey distri- bution, the probability that 𝐴z(𝜔) ≠ 	𝑓(𝜔) 

is less than 5%. 

 

Figure 7 Iteration2 

Notice that although the inferred MA 𝐴 has a statistical guarantee on the difference 

to the behaviors of the calculator. The guarantee does not directly carry over to 



doi:10.6342/NTU201701657

 20 

quantitative properties of MA (such as the minimum and average) obtained using the 

approaches introduced in Section 5. We can show that with confidence 90% the difference 

in the average of words of length 4 between A and the actual calculator is bounded by 

164.5% (check Appendix A.2 for details).  

However, the bound is very loose and hence not that useful. Our experimental results 

suggest that the quality of MA learned by the algorithm and the inferred quantitative 

properties are much better than the worst case theoretical bound. In Table 1, we compare 

the approximate average values obtained via learning and the exact values obtained 

directly from the calculator. 

Table 1 Comparing the approximate average computed via learning and the the exact 
answer obtained directly from the calculator. The parameters (𝜀, 𝛿, 𝑝) = 	 (0.1, 0.9, 0.2). 

Recall that the average sample length is 1/𝑝	 = 	5 . We compare the inferred 

approximation with exact value on length up to 30. To make the result easier to verify, we 

compute the average of words over the alphabet [0,9] 	⊂ 	 [0,11] , Recall that the 

algorithm in Section 5 allows us to focus on a subset of [0, 11]. All words in [0, 9]I are 

completed by Matlab expressions and we can easily compute by hand that the average of 

a length 𝑘 word in [0, 9]I is 4.5	×	10I . Still, we want to emphasize that the learning 

algorithm and also the inferred MA 𝐴 is over the complete alphabet [0, 11]. 
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Chapter 8 Calculator Experiment 

We first use the calculator example to perform an in-depth evaluation of our 

approach from different aspects. For instance, we study the performance impact when the 

incremental alphabet refinement optimization is turned on and off. We then examine the 

generality of the proposed approach using three more examples: “operating system 

scheduling”, “missionaries and cannibals”, and “amount of data transmission in a 

website”. Our implementation is in Matlab and Perl.0 

8.1 Calculator 

Considerations on the choice of alphabet symbols. Observe that our mapping from 

buttons to alphabet symbols keeps the natural order of the numeral but- tons. Below we 

evaluate whether such a mapping is helpful to the performance of our approach. We call 

the mapping we introduced before the natural map- ping. Here we define the random 

mapping which assign randomly each button to a number in [0,11]. The result of the 

experiment is in Table 2, which is the summary of 20 runs for each alphabet mapping. 

The results in the row “Enumeration” is obtained by a brute-force enumeration of all 

words w of length 5 and then computing the average of their evaluation in Matlab. The 

column “#Mem. Queries” is partitioned into three parts: “HM”,“PAC”, and “CE”, which 

denotes those for filling the HM, PAC-based sampling, and counterexample analysis, 

respectively. However, based on our observation more than a half of the membership 

queries are being used for filling the HM which is necessary for the learning process. 
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Table 2 Comparing the performance of natural and random alphabet mappings. The 

parameters (𝜀, 𝛿, 𝑝) = 	 (0.2, 0.8, 0.1). 

The analysis using the natural mapping is clearly more efficient than the one with 

random mapping. We believe the reason is that it is easier for the learning algorithm to 

find “regularity” when the mapping is natural. This is supported by the fact that the size 

of the MA learned with the natural mapping is significantly smaller than the one with a 

random mapping. The lesson learned here is that to use a natural mapping when it is 

possible for the system under analysis. 

8.2 Considerations on the choice of distribution 

We evaluate the impact of choosing different distributions. Beside the monkey 

distribution, we introduce the other two distributions. (a) A uniform distribution over all 

words of length 5. (b) A uniform distribution over all words of length smaller than or 

equals to 5. The average result of 20 runs of each distribution is in Table 3. We found that 

our quantitative analysis is very stable w.r.t. the choice of sampling distributions. Observe 

that a word of length longer than 5 will never be sampled using the two uniform 

distributions, but the estimated values on length 7 are still very precise. We believe this 

is due to the fact the MA learning algorithm is very good in generalizing the collected 

samples. Note that the HM may still contain entries corresponding to words of length 

longer than 5. 
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Table 3 Comparing the performance using different sampling distributions. (𝜀, 𝛿) =

	(0.2, 0.8). We use the random alphabet mapping. 

8.3 Incremental alphabet refinement 

We use a 10 min timeout period and the parameters (𝜀, 𝛿, 𝑝) 	= 	 (0.2,0.8,0.1) to 

evaluate the performance difference of our approach when the incremental alphabet 

refinement optimization is turned on and off. We execute 100 MA learning tasks for each 

setting. If a task cannot be completed within the timeout period, we use 600 sec as its 

execution time. The setting when the optimization is turned off has 20 timeouts and the 

average execution time is 166.96 sec. The one with the optimization turned on has only 

17 timeouts and the average execution time is 150.99 sec. Here we can see that the gain 

in execution time with the optimization is roughly 10%. 

8.4 Distribution of the execution time 

We investigate the performance bottleneck of MA learning. The top 4 time-

consuming component are (1) filling the Hankel matrices, (2) building the transition 

matrices, (3) processing PAC-based equiv- alence queries by sampling, and (4) 

counterexample analysis. The results are presented in Table 4. We set the error rate to 

almost zero so the learning al- gorithm will never terminate. The stop probability p is set 

to 0.1. Beside the standard 12-button calculator, we also tried calculator with 22 and 42 
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buttons, i.e., with numeral button 0-19 and 0-39, respectively. We list the time spent in 

iterations 10, 20 , 40, and 80. The result indicates that most of the time is spent in (1) and 

hence should have the highest priority for further optimizations. For the 80-th iteration of 

the case |𝛴| 	= 	12 , the time spent in PAC-equivalence query dominates the total 

execution time. The reason is that the inferred MA is already very close to the actual 

behavior of the calculator. So the teacher needs to sample and test a large number of words 

before preceding to the next iteration. Also observe that if the time budget is one hour, 

the learning algorithm can find an MA with more than 40 states even if the alphabet size 

is 42. 

Table 4 The time used in different steps of 𝑀𝐴 learning. 
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Chapter 9 Operating System Scheduling Experiment 

An operating system (OS) on a uniprocessor machine maintains a queue of processes 

that are ready to run. Depending on the scheduling policy, the OS may deactivate the 

running process, insert it into the queue, and then remove some process p from the queue 

and activate p for a certain time period. In this example, we assume the first come first 

serve (FCFS) scheduling policy [18]. 

We are interested in the waiting time of a process (the total time period in which the 

process is ready to run but not activated). We assume the maximal execution time is 10 

time units for all processes and define a set of alphabet 𝛴	 = 	 [0, 10]. Basically, for a 

word 𝜔 =	𝑎�𝑎K	. . . 𝑎�, the symbol 𝑎B indicates that at the 𝑖 − 𝑡ℎ	time unit (1) a new 

process with execution time 𝑎B is arrived and ready to run if 𝑎B 	> 	0, or (2) no new 

process arrived if 𝑎B 	= 	0. The output 𝑓(𝜔) is computed by simulating the OS under 

the FCFS policy. Table 5 summaries the results of running the analysis 3 times. The result 

is surprisingly promising; our analysis is as precise as the result obtained by enumerating 

all words of length 𝑘. 

Table 5 Performance on “Operating System Scheduling”. The parameters (𝜀, 𝛿, 𝑝) =

	(0.1, 0.9, 0.2). The row “Enumeration” is obtained by enumerating all words of length 

𝑘. 
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Chapter 10 Missionaries and Cannibals Experiment 

The missionaries and cannibals example is one of the classical river-crossing 

problems. In our setting, 3 missionaries and 3 cannibals want to cross a river using a boat 

under the following constraints: (1) the boat can carry at most 3 people; (2) at least one 

people is required to row the boat; (3) if there are more cannibals than missionaries 

present on a bank (or on a boat), then the cannibals will devour the missionaries. To 

analyze the missionaries and cannibals example with MA, we define a set of alphabet 

𝛴	 = 	 {(𝑖, 𝑗)	|	𝑖 + 𝑗	 ∈ 	 [3]} . For a word 𝑤	 = 	 (𝑖�, 𝑗�)(𝑖K, 	𝑗K)	. . . (𝑖�, 	𝑗�) , the symbol 

(𝑖I, 	𝑗I) indicated that 𝑖I  missionaries and 	𝑗I  cannibals row the boat (1) from the 

source bank to the destination bank if 𝑘 is even, or (2) in the other direction if 𝑘 is odd. 

Our goal is to estimate the number of people on the destination bank at the 𝑘 − 𝑡ℎ step. 

We encode the number of people on the destination bank in the power of 2. That is, 2H 

denotes there are 𝑛 people on the destination bank. Then moving one person to the 

destination bank becomes ×2 and removing one becomes ÷ 2. 

Observe that by encoding the number of missionaries and cannibals at each bank and 

the position of the boat as the states of an MA, one can obtain a deterministic MA that 

precisely computes the number of people on the destination bank. Each alphabet symbol 

will move the MA from one state to only one target state and update the number of people 

on the destination bank accordingly using ×2  and ÷ 2 . The number of states are 

bounded by 3¬	×	2. The boat has two positions and each person has at most three statuses: 

at the source, at the destination, and being devoured. So we know that rank of the target 

function is finite, although its value can be high. 

Table 6 summaries the results of running the analysis 20 times. The output 𝑓(𝜔) is 
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computed by simulating the move of the boat according to 𝜔. In general, our method 

produces a very precise estimation on the average output value. In this case, the maximum 

value we obtained is only sub-optimal. We believe this might due to a special feature of 

the example: once we made an incorrect step, some missionaries will be devoured and 

there is no way to resurrect them. So the imprecision of the model will cause a huge 

impact to the estimated maximum value. Similarly, we obtain the reference answer by 

enumeration. We only have results up to length 7 because it takes more than 10 hours to 

compute the reference answer when the length is 7. 

Table 6 Performance on “Missionaries and Cannibals”. The parameters (𝜀, 𝛿, 𝑝) =
	 0.1, 0.9, 0.2 . The row “Enumeration” is obtained by enumerating all words of length 
𝑘. 
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Chapter 11 Amount of Data Transmission in a Website 

Average and worst-case response time are important measures of the performance 

of a website. For static web pages, the response time is usually proportional to the size of 

the page being transmitted. In the experiment, we estimate the average and maximum size 

of data transmitted during 𝑘-page visits. 

Define an initial set of alphabet 𝛴	 = 	 [2]. Basically, a symbol 𝑖	 ∈ 	𝛴 indicates the 

𝑖 − 𝑡ℎ hyperlink in the current web page. A word 3	4	2 denotes the sequence of actions: 

click the 3rd hyperlink in the first web page, the 4th hyperlink in the next web page, and 

then the 2nd link in the last web page. Whenever a web page containing 𝑘 hyperlinks 

with 𝑘	 > 	2 is detected during sampling, the alphabet is extended to [𝑘]. We use the 

personal web-site of our colleague as the target to analyze. The result is presented in Table 

7. 

Table 7 Performance on the “Amount of Data Transmission in a Website” problem. The 

parameters (𝜀, 𝛿, 𝑝) = 	 0.1, 0.9, 0.2 . Here the numbers are in byte and the size of 

alphabet of the learned MA is 16. 

We encountered a number of difficulties working on a realistic problem like this. For 

example, the web server blocks our connection when we make too many requests within 

a period of time. So we can only send one request per second to avoid being blocked. 

Subsequently, a membership on a word of length n requires n requests to the website, 

which costs at least n seconds. Therefore, here we can only offer the exact reference 
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answer for the case of length 3. We could not offer the reference answer of other lengths 

because it would require months of time. 

Summary 

Our work is the first to apply an MA learning algorithm with a PAC guarantee to the 

context of quantitative analysis. The encouraging experimental results suggest that our 

approach has tremendous potential. Although the MA learn- ing algorithm terminates 

only when the target function is of a finite rank, our approach can be applied even when 

the rank of the target function is infinite. Observe that beside the example “missionaries 

and cannibals”, we do not know if the the target function is of a finite or an infinite rank. 

Currently, our tool can infer an MA model with 50 to 100 states within one hour, provided 

that the size of alphabet is below 50. Our implementation is in Matlab and Perl. We 

believe its performance can be improved using a more efficient programming language. 
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