請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24608
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭博成 | |
dc.contributor.author | Shang-Tse Chen | en |
dc.contributor.author | 陳尚澤 | zh_TW |
dc.date.accessioned | 2021-06-08T05:33:05Z | - |
dc.date.copyright | 2011-08-04 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-27 | |
dc.identifier.citation | 1. http://zh.wikipedia.org/wiki/File:BRL61-IBM_305_RAMAC.jpeg
2. https://www1.hitachigst.com/hdd/hddpdf/tech/chart02.pdf 3. http://www.seagate.com/www/en-us/products/internal-storage/barracuda-xt-kit/ 4. http://www.hitachigst.com/hdd/hddpdf/tech/chart13.pdf 5. B. D. Cullity, “ INTRODUCTION TO MAGNETIC MATERIALS ”, Massachusetts: Addison-Wesley, 1972 6. H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn. 34, 1845 (1998) 7. S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997) 8. D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999) 9. 楊志信,台灣資訊儲技術協會會刊,940403,1 (2005) 10. M. S. Patwari, and R. H. Vistoria, IEEE Trans. Magn. 40, 247 (2004) 11. S. Batra, J. D. Hannay H. Zhou, and J. S. Goldberg, ibid 40, 319 (2004) 12. S. I. Iwasaki, and Y.H. Nakamura, IEEE Trans. Magn., 13, 1272(1977). 13. J. J. Miles, D. McA. McKirdy, R. W. Chantrell, and R. Wood, IEEE Trans. Magn. 39, 1876 (2003) 14. H. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005) 15. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, Mike F. Toney, M. Scgwickert, J.-U Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000) 16. 增厚朗及盧志權,磁性技術協會會訊,第25期,9(2000) 17. S. Khizrroev and D. Litvinov, J. Appl. Phys. 95, 4521 (2004) 18. M. H. Kryder and R. W. Gustafson, J. Magn. Magn Mater. 287 449 (2005) 19. T. Shima, K. Takanashi, Y. K. Takashi, and K. Hono, Appl. Phys. Lett. 85, 2471(2004) 20. J. S. Chen, B. C. Lim, J. F. Hu, Y. K. Lim, B. Liu, and G. M. Chow, Appl. Phys. Lett 90, 042508] 21. R. A. MaCurrie and P. Gaunt, Philos. Mag. 13, 567 (1966) 22. Y. Iijima, O. Taguchi, and K. Hirano, Trans. Japan Inst. Met 21, 366 (1980) 23. 林宥朋,”碩士論文:銅添加對鈷鉑薄膜序化與磁特性之影響”,私立逢甲大學材料科學與工程研究所 (2002) 24. J. A. Christodoulides and P. Farber. IEEE. Trans. Magn. 37, 1292 (2001) 25. H. J. Tichter, “The transition from longitudinal to perpendicular recording,” J. Phys. D: Appl. Phys., vol. 40, pp. R140-R177 26. E. F. Kneller and, R. Hawig, IEEE Trans. Magn., 27, 3588 (1991) 27. O. Hellwig, J. B. Kortright, K. Takano, and E. E. Fullerton, Phys. Rev. B62, 11694 (2000) 28. E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader, Phys. Rev. B58, 13293 (1998) 29. C. Lim, E. Kim, Y. Kim, and H. Oh, Intermag, San Diego (2006) Paper No. DR04. 30. 林季宏2006國立台灣大學材料科學與工程碩士論文 P9 31. J. Orehotsky and J. L. Orehotsky, J. Appl. Phys. 61, 1210 (1987) 32. K. Barmak, R. A. Ristau, K. R. Coffey, M. A. Parker, and J. K. Howard, J. Appl. Phys. 79, 5330 (1996) 33. K. Barmak, J. Kim, and S. Shell, Appl. Phys. Lett. 80, 4268 (2002) 34. Xiangcheng Sun, Z. Y. Jia, Y. H. Hung, J. W. Harrell, D. E. Nikles, K. Sun and L. M. Wang, J. Appl. Phys. Lett. 95, 11 (2004) 35. D. Y. Oh and J. K. Park, J. Appl. Phys. 97, 10N105 (2005) 36. W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, and H. Y. Lee, J. Magn. Magn. Mater. 303, e246-e246 (2006) 37. F. T. Yuan, H. W. Chang, W. M. Liao, S. N. Hsiao, S. K. Chen, Y. D. Yao, and H. Y. Lee. J. Appl. Phys. 101, 09K526 (2007) 38. T. J. Klemmer, C. Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, J. Magn. Magn. Mater. 266, 79 (2003) 39. Jung H. Kim, Jeon Kim, Nuri Oh, Young-Ho Kim, Chang Kyung Kim, and Chong Seung Yoon, Sungho Jin Appl. Phys. Lett. 90 023117 (2007) 40. K. K. M. Pandey, J. S. Chen, G. M. Chow, and J. F. Hu Appl. Phy. Lett. 94 232502 (2009) 41. Y. J. Zhang, Y. T. Yang, Y. Liu, Y. X. Wang, X. Y. Li, D. D. Wang, J. Cao, N. N. Yang, J. Li, S. Y. Yang, Y. Q. Liu, M. B. Wei, J. H. Yang. J. Alloys and Compounds, 509, 326 42. E. Manios, V. Karanasos, D. Niarchos, and I. Panagiotopoulos, J. Magn. Magn. Mater. 272-276, 2169 (2004) 43. W. M. Liao, Y. P. Lin, F. T. Yuan, S. K. Chen J. M. M. M. 272-276(2004) 44. X.-H. Xu, Z.-G. Yang, and H.-S. Wu, J. Magn. Magn. Mater. 295, 106 (2005) 45. O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon, and K. Fukamichi, Appl. Phys. Lett. 78, 1104 (2001) 46. Fujun Yang, Hao Wang, Hanbin Wang, Jun Zhang, Jianhua Zhu, Quan Li and Yong Jiang J. Phys. D: Appl. Phys. 42 115001 (2009) 47. H. Wang, S. X. Xue, F. J. Yang, H. B. Wang, X. Cao, J. A. Wang, Y. Gao, Z. B. Huang, C. P. Yang, W. Y. Cheung, S. P. Wong, Q. Li, and Z. Li, Thin Solid Films, 505, 77 (2006) 48. C. L. Shen, P. C. Kuo, Y. S. Li, G. P. Lin, S. L. Ou, K. T. Huang, S. C. Chen. Thin Solid Films. 518. 7356-7359 (2010) 49. F. Casoli, F. Albertini, S. Fabbrici, C. Bocchi, L. Nasi, R. Ciprian, and L. Pareti, IEEE Trans. Magn., 41, 3877 (2005) 50. S. Hirosawa, H. Kanekiyo, and M. Uehara, J. Appl. Phys. 73, 6488 (1993) 51. V. Alexandrakis, D. Niarchos, K. Mergia, Jehyun Lee, J. Fidler, and I. Panagiotopoulos J. Appl. Phys 107, 013903(2010) 52. Fang Wang, Xiao-Hong Xu, Yan Liang, Jing Zhang, Jun Zhang Materials Chemistry and Physics 126 843-846(2011) 53. Iulica Zana, Giovanni Zangar, J. Magn. Magn. Mater., 292, 266-280 (2005) 54. T. Shimatsu, H. Sato, Y. Okazaki, H. Aoi, H. Muraoka, and Y. Nakamura, J. Appl. Phys. 99, 08G908 (2006) 55. K. K. M. Pandey, J. S. Chen, B. C. Lim, G. M. Chow, J. Appl. Phys. 104, 073904 (2008) 56. S. C. Chen, P. C. Kuo, S. L. Hsu, G. P. Lin, S. L. Ou, and T. H. Sun, IEEE Trans. Magn. 45. 5. (2009) 57. Rujun Tang, Pin Ho, Boon Chow Lim, Thin Solid Films 518 5813-5819(2010) 58. R. A. Morris, Y. Inaba, J. W. Harrell, G. B. Thompson, Thin Solid Films 518 4970-4976( 2010)] 59. http://nems.ntu.edu.tw/NEMS-2008/images/stories/NMC-W-8002_WEB.pdf 60. S. –E. Park, P. –Y. Jung, and K. –B. Kim, J. Appl. Phys. 77, 2641(1995) 61. J. Mallet, K. Yu-Zhang, S. Matei-Tempfli, and L. Piraux, J. Phys. D 38, 909(2005) 62. M. Lu, T. Song, T. Zhou, J. Wang, S. Piramanayagam, W. Ma, and H. Gong, J. Appl. Phys. 95, 6735(2004) 63. J. D. Livingston, J. Appl. Phys., 52, 2544(1981) 64. Y. H. Fang, P. C. Kuo, . L. Lin, S. C. Chen, C. T. Kuo, and G. P. Lin, J. Magn. Magn. Mater. 320 3032-3035 (2008) 65. H. Wang, F. J. Yang, S. X. Xue, Q. Mo, H. B. Wang, Q. Li, and Z. Y. Li, Appl. Phys. A 88, 775-779(2007) 66. W.M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, S. N. Hsiao, and W. C. Chang, J. Magn. Magn. Mater. 304, e255(2006) 67. 林哲平 Study of magnetic properties and microstructures of FePt island films, 博士論文(2010) 68. An-Cheng Sun, Fu-Te Yuan, Jen-Hwa Hsu, Y. H. Lin, P. C. Kuo, IEEE Transactions on Maagnetics, 45, 6 (2009) 69. D. Suess, Appl. Phys. Lett. 89, 113105 (2006) 70. S. H. Park, S. O. Kim, T. D. Lee, H. S. Oh, Y. S. Kim, N. Y. Park, D. H. Hong, J. Appl. Phys. 99, 08E701 (2006) 71. J. W. Park, Y. K. Kim, T. H. Lee, H. S. Oh, and B. k> Lee, Phys. Status Solidi A 201, 1763 (2004) 72. J. Sayama, K. Mizutani, T. Asahi and T. Osaka, Appl. Phys. Lett. 85. 23 (2004) 73. S. D. Willoughby, R. A. Stern, R. Duplessis, and J. M. MacLaren, M. E. McHenry and D. E. Laughlin, J. Appl. Phys. 93, 7145 (2003) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24608 | - |
dc.description.abstract | 本研究以直流磁控濺鍍的方式鍍製Co100-xPtx/Ag、Co80Pt20/Ag合金等薄膜於康寧1737玻璃基板上,探討Ag底層及製程參數對Co100-xPtx合金薄膜之顯微結構、磁性質的影響。
Ag底層之引入可降低CoPt合金薄膜之序化溫度及促進其垂直磁異向性。Co56Pt44/Ag雙層膜經700oC退火 30分鐘後,薄膜之磁異向性由磁等向性轉變為傾向垂直膜面磁異向性,其垂直膜面矯頑磁力(Hc⊥)高達15.9 kOe、垂直膜面角型比(S⊥)為0.884。進一步加入Co56Pt44軟磁層於Co56Pt44硬磁層/Ag雙層膜上方,當軟磁層厚度超過2 nm後,薄膜的磁翻轉機制會由 single switching field轉變為two-step reversal processes。 常溫初鍍之單層Co80Pt20(25 nm)薄膜呈現磁等向性,僅加入Ru底層或僅加入Ag底層皆無法使其產生垂直膜面磁異向性。然而搭配100 nm Ag底層及30 nm Ru中間層後可獲得垂直磁異向性之Co80Pt20合金薄膜,其Hc⊥值可達4.53 kOe ,S⊥值為0.815。TEM明視野影像顯示,Co80Pt20磁性層之晶粒呈現柱狀及顆粒狀結構,其平均晶粒尺寸約為8.1 nm。進一步將Co80Pt20(25 nm)/Ru(30 nm)/Ag(100 nm)多層膜置於1 mTorr的環境下進行300 oC退火後,薄膜之垂直硬磁性可大幅提升,其Hc⊥及S⊥分別上升至5.04 kOe 及0.869,這些性質具備應用於高密度垂直磁記錄媒體的潛力。 | zh_TW |
dc.description.abstract | In this study, an Ag underlayer is deposited on the 1737 Corning glass by dc magnetron sputtering, then the Co56Pt44 or Co80Pt20 alloy films is deposited onto the Ag layer. The effects of Ag underlayer and process parameters on the microstructure and magnetic properties of Co100-xPtx films are investigated.
The ordering temperature of Co56Pt44 films can be reduced as Ag underlayer is introduced. Ag underlayer can also promote the perpendicular hard magnetic properties of the film. After annealing at 700oC for 30 min, the perpendicular coercivity (Hc⊥) and perpendicular squareness (S⊥) are increased to 15.9 kOe and 0.884, respectively. The Co56Pt44 soft layer is further added on the Co56Pt44 hard layer/Ag double-layered film. It is found that the magnetization reversal process of the films changes from a single switching field to a two-step reversal processes when the thickness of the soft layer is above 2 nm. Granular Co80Pt20 nano-grains having perpendicular coercivity of 4.53 kOe and perpendicular squareness of 0.815 can be achieved by dc sputtering Co80Pt20 (25nm) film onto Ru(30nm)/Ag(100nm)/Glass at ambient temperature. TEM cross-sectional images show that the columnar nano-grains with average width of 8.1 nm are observed in Co80Pt20 magnetic layer. When post-annealed the Co80Pt20/Ru/Ag/Glass multi-layer films in a vacuum of 1mTorr at a lower temperature of 300 oC for 30 min, both the perpendicular coercivity and perpendicular squareness of the film can be increased greatly to 5.04 kOe and 0.869, respectively. It has significant potential to be applied as the perpendicular magnetic recording medium. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:33:05Z (GMT). No. of bitstreams: 1 ntu-100-R98527062-1.pdf: 10941733 bytes, checksum: 083bd851491d5e912f7f05ae1f5fda00 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 圖目錄 VII 表目錄 XII 第一章 前言 1 第二章 基礎理論與文獻回顧 5 2-1 理論基礎 5 2-1-1 基本磁記錄原理 5 2-1-2 磁記錄方式 6 2-1-3水平磁記錄的極限 7 2-1-4垂直磁記錄 8 2-1-5 CoPt材料特性 9 2-1-6 CoPt序化度的計算 10 2-1-7 交互耦合媒體 10 2-2 文獻回顧 12 2-2-1 CoPt合金薄膜 12 2-2-2 添加底層的CoPt薄膜 14 2-2-3 交互耦合媒體 16 2-2-4 Co3Pt薄膜 17 2-3 研究方向 19 第三章 實驗方法 23 3-1 實驗流程 23 3-2 靶材選取 24 3-3基板選取與基板清洗 24 3-3-1基板選取 24 3-3-2 基板清洗 24 3-4實驗裝置及薄膜製備 25 3-4-1實驗裝置 25 3-4-2薄膜濺鍍 25 3-4-3 退火步驟 27 3-5磁性質分析 27 3-6 EPMA之化學組成分析 28 3-7 AFM厚度及表面形貌分析 28 3-8微結構分析 29 3-8-1 X光繞射分析 29 3-8-2 TEM微結構及成分分析 29 第四章 實驗結果與討論 42 4-1 Co100-xPtx單層合金薄膜 42 4-1-1 Co100-xPtx合金成分對微結構的影響 42 4-1-2 Co100-xPtx合金成分對磁性質的影響 43 4-1-3 單層Co56Pt44薄膜的TEM微結構分析 44 4-2 Ag底層對Co100-xPtx合金薄膜的影響 45 4-2-1 Ag底層製作 46 4-2-2 退火溫度對Co100-xPtx/Ag薄膜微結構的影響 46 4-2-3 退火溫度對Co100-xPtx/Ag薄膜磁性質的影響 48 4-2-4 Co56Pt44/Ag薄膜TEM微結構分析 50 4-3 軟磁層對Co56Pt44(軟磁)/Co56Pt44(硬磁)/Ag薄膜的影響 51 4-3-1 軟磁層厚度對 Co56Pt44(軟磁)/Co56Pt44(硬磁)/Ag多層膜之影響 51 4-3-1-a 軟磁層厚度對 Co56Pt44(軟磁)/Co56Pt44(硬磁)/Ag多層膜微結構之影響 51 4-3-1-b 軟磁層厚度對 Co56Pt44(軟磁)/Co56Pt44(硬磁)/Ag多層膜磁性質之影響 52 4-3-2 相對軟磁層層數對 Co56Pt44(軟磁)/Co56Pt44(硬磁)/Ag多層膜磁性質之影響 52 4-4 Co80Pt20/Ru/Ag/glass多層膜 54 4-4-1 Ag厚度對Co80Pt20/Ru/Ag/glass多層膜的影響 54 4-4-1-a Ag厚度對Co80Pt20/Ru/Ag/glass多層膜微結構的影響 54 4-4-1-b Ag厚度對Co80Pt20/Ru/Ag/glass多層膜磁性質的影響 55 4-4-2 Ag底層後退火溫度對Co80Pt20/Ru/Ag/glass多層膜的影響 55 4-4-2-a Ag底層後退火溫度對Co80Pt20/Ru/Ag/glass多層膜微結構的影響 56 4-4-2-b Ag底層後退火溫度對Co80Pt20/Ru/Ag/glass多層膜磁性質的影響 56 4-4-3 Ru中間層的濺鍍氬壓對Co80Pt20/Ru/Ag/glass多層膜的影響 57 4-4-3-a Ru中間層的濺鍍氬壓對Co80Pt20/Ru/Ag/glass多層膜微結構的影響 58 4-4-3-b Ru中間層的濺鍍氬壓對Co80Pt20/Ru/Ag/glass多層膜磁性質的影響 58 4-4-4 Ag底層的濺鍍氬壓對Co80Pt20/Ru/Ag/glass多層膜的影響 59 4-4-4-a Ag底層的濺鍍氬壓對Co80Pt20/Ru/Ag/glass多層膜的影響 60 4-4-4-b Ag底層的濺鍍氬壓對Co80Pt20/Ru/Ag/glass多層膜的影響 60 4-4-5 Ru中間層後退火溫度對Co80Pt20/Ru/Ag/glass多層膜的影響 61 4-4-5-a Ru中間層後退火溫度對Co80Pt20/Ru/Ag/glass多層膜微結構的影響 61 4-4-5-b Ru中間層後退火溫度對Co80Pt20/Ru/Ag/glass多層膜磁性質的影響 62 4-5 Ru中間層與Ag底層對Co80Pt20合金薄膜之hcp(0002)從優取向磊晶效果比較 63 4-5-1 Ru中間層與Ag底層對Co80Pt20合金薄膜之微結構影響 64 4-5-2 Ru中間層與Ag底層對Co80Pt20合金薄膜之磁性質影響 64 4-5-3 Co80Pt20(25 nm)/Ru(30 nm)/Ag(100 nm)多層膜之TEM影像圖 66 第五章 結論 118 參考文獻 120 | |
dc.language.iso | zh-TW | |
dc.title | 垂直磁異向性之Co56Pt44/Ag及Co80Pt20/Ag薄膜
磁性質與微結構的研究 | zh_TW |
dc.title | The study of microstructures and magnetic properties of Co56Pt44/Ag and Co80Pt20/Ag alloy thin films with perpendicular magnetic anisotropy. | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃暉理,陳勝吉 | |
dc.subject.keyword | 垂直磁紀錄,鈷鉑合金,薄膜, | zh_TW |
dc.subject.keyword | perpendicular magnetic recording,CoPt,thin film, | en |
dc.relation.page | 123 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 10.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。