請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24011完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳錫侃 | |
| dc.contributor.author | Shao-Wei Chi | en |
| dc.contributor.author | 机紹瑋 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:14:06Z | - |
| dc.date.copyright | 2006-07-11 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-07 | |
| dc.identifier.citation | 1. L.C. Chang and T.A. Read, Trans. AIME., 189 (1951) 47.
2. L.Mc.D. Schetky, Scientific American, 241 (1979) 74. 3. C.M.Wayman, J.Metal, 32 (1980) 129. 4. K. Otsuka and K.Shimizu, Int. Met. Rev., 31 (1986) 93. 5. J.L. Smialek and R.F. Hehemann, Met. Trans. A, 4 (1973) 1571. 6. J.H. Yang and C.M. Wayman, Mater. Lett., 16 (1993) 254. 7. N.F. Kennon, D.P. Dunne and L. Meddleton, Met, Trans. A, 13 (1982) 551. 8. S.K. Wu, Ph.D. Thesis, University of Illinois, (1986). 9. 羅一中, 台大材料科學與工程學研究所博士論文, 民國81年. 10. H. Kessler and W. Pitsch, Acta Met., 15 (1967) 401. 11. T. Saburi, S. Nenno and C.M. Wayman, ICOMAT-79 (1979) 619. 12. A. Nagasawa, K. Enami, Y. Ishino, Y. Abe and S. Nenno, Scripta Metall., 8 (1974) 1055. 13. T. Saburi and S. Nenno, Scripta Metall., 8 (1974) 1363. 14. T.A. Schroder and C.M. Wayman, Scripta Metall., 11 (1977) 225. 15. K. Enami, A. Nagasawa and S. Nenno, Scripta Metall., 9 (1975) 941. 16. L. Delaey and J. Thienel, in: Shape Memory Effects in Alloys, (J. Perkins, ed.), Plenum Press, New York, 1975, pp.341. 17. T. Saburi and S. Nenno, in: Proc. Int’l. Conf. on Solid to Solid Phase Transformations, ASM, Metals Park, Ohio, 1982, pp.1455. 18. M. Nishida and T. Honma, Scripta Metall., 18 (1984) 1293. 19. M. Nishida and T. Honma, Scripta Metall., 18 (1984) 1299. 20. M. Nishida and C.M. Wayman, Scripta Metall., 18 (1984) 1389. 21. K. Otsuka and K. Shimizu, Int’l. Met. Rev, 31 (1986) 93. 22. M. Nishida and T. Honma, ICOMAT-82,J. de physique (Supp.), 43 (1982) C4-225. 23. T. Honma, Proc. Int’l. Symp. on Shape Memory Alloys, SMA 86 Guilin,China, 1986 pp.83. 24. T. Honma, ICOMAT-86 (1986) 709. 25. K. Otsuka and K. Shimizu, Metals Forum, 4 (1981) 142. 26. K. Otsuka and C.M. Wayman, in: Reviews on the Deformation Behavior of Materials, (P. Feltham ed.), Israel, 1977, pp.81. 27. K. Otsuka, in: Proc. Int’l. Conf. on Solid to Solid Phase Transformations, TMS-AIME Pittsburgh PA. (USA), 1981, pp.1267. 28. K. Otsuka and X. Ren, Intermetallics, 7 (1999) 511. 29. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Editors, Binary Alloy Phase Diagrams, 2nd ed., Vol. 3. Ohio, ASM Int’l, 1990, pp.2875. 30. C. M. Jackson, H. J. Wagner and R. J. Wasilewski, NASA-SP 5110, 1972. 31. K. Ostuka, S. Sawamura and K. Shimizu, Phys. Stat. Sol., 5 (1971) 457. 32. O. Matsumoto, S. Miyazaki, K. Ostuka and H. Tamura, Acta Mater., 35 (1987) 2137. 33. K.M. Knowls and K.A. Smith, Acta Mater., 29 (1981) 101. 34. D.P. Dautovich and G.R. Purdy, Can. Metall., 6 (1972) 115. 35. D. Bradley and J. Acoust. Soc. Am., 37 (1965) 700. 36. C.M. Wayman and I. Cornelis, Scripta Metall., 6 (1972) 115. 37. H.C. Ling and R. Kaplow, Met. Trans. A, 11 (1980) 77. 38. D.P. Dautovich and G.R. Purdy, Can. Metal. Quart., 4 (1965) 129. 39. F.E. Wang, B.F. Desavage and W.I. Buehler, J. Appl. Phys., 39 (1968) 2166. 40. G.D. Sandrock, A.J. Perkin and R.F. Hehemann, Met. Trans. A, 2 (1971) 2769. 41. O. Mercier and K.N. Melten, Acta Met., 27 (1979) 1467. 42. H.A. Mohamed and J. Washburn, Met. Trans. A, 7 (1976) 1041. 43. H.C. Ling and R. Kaplow, Met. Trans. A, 12 (1981) 2101. 44. E. Goo and R. Sinclair, Acta Metall., 33 (1985) 1717. 45. S.K. Wu and H.C. Lin, Scripta Metall., 25 (1991) 1529. 46. C.M. Hwang, M. Meichle, M.B. Salamon and C.M. Wayman, Phil. Mag. A,47 (1983) 31. 47. K.H. Eckelmeyer, Scripta Mater., 10 (1076) 677. 48. J.E. Hanlon, S.R. Butler and R.J. Wasilewski, Trans. Metall. Soc. AIME, 239 (1967) 1323. 49. T. Saburi, T. Tatsumi and S. Nenno, J. de Physique (Supp.) 43 (1982) C4-261. 50. T. Tadaki, Y. Nakata and K. Shimizu, Trans. JIM., 28 (1987) 883. 51. S. Miyazaki, Y. Igo and K. Otsuka, Acta Met., 34 (1986) 275. 52. M. Nishida and C.M. Wayman, Metallography, 21(1988) 275. 53. G. Airoldi, G. Bellini and C.D. Franceso, J. Phys. F, 14 (1984) 1983. 54. H.S. Lin, S.K. Wu, T.S. Chou and H.P. Kuo, Acta Metall. Mater., 39 (1991) 2069. 55. T. Saburi, Shape Memory Materials, Edited by K. Otsuka and C.M. Wayman, Cambridge University Press, 1998, pp.58. 56. C.M. Wayman, Proc. ICOMAT-89, Sydney, 1989, PP. 519. 57. 黃兵民,哈爾濱工業大學博士論文,1997. 58. C.S. Zhang, Y.Q. Wang, J.X. Cheng and L.C. Zhao, Proc. First Int’l Conf. on Shape Memory and Superelastic Technologies, California,1994, pp.383. 59. 黃兵民,蔡傳,趙連成,宇航材料工藝,27(5) 1997, 24. 60. T. Saburi and S. Nenno, Proc. Int’l. Conf. on Solid to Solid Phase Transformations, Pittsburgh, 1981, pp.1455. 61. T. Saburi, M. Yoshida and S. Nenno, Scripta Metall., 18 (1984) 363. 62. S. Miyazaki, S. Kimura, K. Otsuka and Y. Suzuki, Scripta Metall., 18 (1984) 833. 63. T. Saburi, Proc. MRS Int’l. Mtg. on Adv. Mater., Tokyo, Vol. 9 (Shape Memory Mater.), 1989, pp.77. 64. T. Tadaki and C.M. Wayman, Scripta Metall., 14 (1980) 911. 65. Y.F. Zheng, B. M. Huang, J. X. Zhang and L.C. Zhao, Mater. Sci. Eng. A, 279 (2000) 25. 66. Y. Kawaguchi, K. Katsube, M. Murahashi and Y. Yamada, Wire J. Int’l, 121 (1991) 53. 67. S. Saito, T. Wachi and S. Hanada, Mater. Sci. Eng. A, 161 (1993) 91. 68. 相場滿等,日本金屬學會會報, 31(6) (1992) 541. 69. I. Koji, Proc. IEEE Micro Electro Mechanical System, 1994, pp.355. 70. Y.S. Zhang, Acta Metall. Sinica, 6B (4) (1993) 263. 71. Katsutoshi and Y. Masaaski, Proc. IEEE Micro Electro Mechanical System, 1990, pp.217. 72. J.C. Hey and A.P. Jardine, Mater. Sci. Eng. A, 188 (1994) 291. 73. P. Filip and K. Mazanec, Mater. Sci. Eng. A, 174 (1994) L41-L43. 74. H.C. Lin and S.K. Wu, Acta Metal., 42 (1994) 1623. 75. H.C. Lin and S.K. Wu, Metall. Trans. A, 24 (1993) 293. 76. D.Y. Li, X.F. Wu and T. Ko, Acta Metall. Mater., 38 (1990) 19. 77. M.T. Yeh, H.P. Kao and S.E. Hsu, unpublished research, 中山科學院. 78. 鈴木雄一,日本金屬學會會報, 24(1) (1985) 41. 79. C.M. Jackson, H.J. Wanger and R.J.Wasilewski, 55-NITIONL Report, NASA-SP5110, 1972. 80. A.G. Rozner and W.J. Buehler, Low Temperature Deformation of the TiNi Intermetallic Compound, Rept, NOLTR.66~38, U.S. Naval Ordnance Laboratry, Mar, 1, 1996. 81. 鈴木雄一著, 形狀記憶合金發展現況(林於隆博士譯). 82. 佐分利敏雄, 捻也宗次, 西本泰憲,錢谷 誠, 鐵和鋼, 1986, 第6號, pp.37~44. 83. 本橋嘉信, 星屋泰二, 岡本芳三, 大森宮次郎, 日本金屬協會誌, 55(02) (1991) 132. 84. J.S. Madsen and A. P. Jardine, Scripta Metall. Mater., 30 (1994) 1189. 85. W.J. Moberly, J.D. Busch, A.D. Busch, A.D. Johnson and M.H. Berkson, MRS Symp. Proc., 230 (1991) 85. 86. D. Golberg, Y. Xu, Y. Murakami, S. Morito, K. Otsuka, T. Ueki and H. Horikawa, Scripta Metall. Mater., 30 (1994) 1349. 87. Y.D. Kim and C.M. Wayman, Scripta Met., 24 (1990) 245. 88. H.C. Dondersloot and J.H.N. Van Vuht, J. Less Comm. Met., 20 (1970) 83. 89. V.N. Khachi, N.M. Matveeva, V.P. Sivokha, D.B. Chernov and Y.K. Koveristyi, Translated from Dokl. Akad. SSSR, 257 (1981) 167. 90. Y. Shugo, Y.Yagi and T. Honma, Bull. Res. Inst. Min. Dress. Metall., 43 (1987) 139. 91. Y. Shugo and T. Honma, ibid, 43 (1987) 128. 92. Y. Shugo, ICOMAT-89, Mat. Sci. Forum, 56-58 (1990) 631. 93. S.M. Tuominen and R.J. Biermann, J. Metal, Feb (1988) 32. 94. H.C. Yi and J.J. Moore, ICOMAT-89, Mat. Sci. Forum, 1990, pp.735. 95. J.J. Moore and H.C. Yi, ibid, 1990, pp.637. 96. H.C. Yi and J.J. Moore, J. Mat. Sci. Lett. 8 (1879) 1182. 97. H.C. Yi and J.J. Moore, Scripta Metall., 22 (1988) 1889. 98. V.N. Khachin, N.A. Matveeva, V.P. Sivokha, and D.V. Chernov, Dokl. Akad. Nauk SSSR, 257 (1981) 167. 99. P.G. Lindquist and C.M. Wayman, in Engineering Aspects of Shape Memory Alloys, ed. T. W. Duering, K.N. Melton, O. Stockel and C. M. Wayman, Butterworth-Heinemann, London, 1990, pp.129. 100. W.S. Yang and D.E. Mikkola, Scripta Metall. Mater.,28 (1993) 161. 101. K. Otsuka, K. Oda, Y. Ueno, M. Piao, T. Ueki and H. Horikawa, Scripta Metall., 29 (1993) 1355. 102. Y. Suzuki, Y. Xu, S. Morito, K. Otsuka and K. Mitose, Mater. Lett., 36 (1998) 85. 103. S. Shimizu, Y. Xu, E. Okunishi, S. Tanaka, K. Otsuka and K. Mitose, Mater. Lett., 34 (1998) 23. 104. 謝世峰,台大材料所博士論文 (1997). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24011 | - |
| dc.description.abstract | 本研究針對TiNiPd高溫SMAs中的Pd由Cu部分取代,探討不同取代量對合金之變態行為、加工性、形狀記憶效應、顯微組織等之影響,並將合金冷加工後,經不同的退火溫度及退火時間,了解其變態行為及SME的改變情形。研究結果得知,TiNiPdCu合金系統在900℃固溶處理1小時後為一階的B2←→B19相變態,隨著Cu取代量的增加,其冷軋延加工性會變差,M*、A*、ΔHh、ΔHc亦會呈一線性下降,而其SME性質,可隨著循環次數的增加而獲得改善。TiNiPdCu合金系統經冷軋延後,在500℃短時間退火下變態溫度和潛熱其值較佳,隨著退火時間的增長,會造成富銅之析出物析出,使相變態行為受到壓抑。而在650℃短時間退火下就能消除冷加工的影響,且隨著退火時間增長,其相變態溫度和潛熱之增加減緩並趨於穩定。本研究同時發現Cu取代Pd的量不要超過10﹪為佳。 | zh_TW |
| dc.description.abstract | Ti50Ni50-x(Pd,Cu)x high temperature shape memory alloys (SMAs) with Pd substituted by Cu are studied. The effect of Cu content on SMAs’ transformation behavior, workability, shape memory effect (SME) and microstructure is also investigated. Specimens are hot-rolled and solution-treated, or cold-rolled and annealed at various temperatures and times. Experimental results show that, after solution-treated at 900℃ for 1 hour, TiNiPdCu SMAs are one stage B2←→B19 transformation. With increasing the Cu content, the cold-rolling ability of TiNiPdCu SMAs reduces and their transformation temperature and latent heat decrease linearly. The SME can be improved by increasing the number of thermal cycles. When annealing at 500℃ for a short time, transformation temperature and latent heat of specimens are near the solution-treated ones. On the other hand, the martensitic transformation of TiNiPdCu SMAs is suppressed due to the formation of Cu-rich precipitates for long annealing time. The effect of cold-rolling can be eliminated when TiNiPdCu SMAs are annealing at 650℃ in short time. When annealing time is prolonged, their transformation temperature and latent heat become stable. The up limit of the amount of Pd substituted by Cu in TiNiPdCu SMAs is suggested to be 10%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:14:06Z (GMT). No. of bitstreams: 1 ntu-95-R93527038-1.pdf: 7953241 bytes, checksum: ec1c087f1ff02d11a45ab25c88034ca2 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………i
英文摘要………………………………………………………………….iii 第一章 前言………………………………………………………………1 第二章 文獻回顧………………………………………………...………5 2-1 形狀記憶合金(SMAs)簡介...…………………………………………..5 2-1-1 形狀記憶效應(SME)……………………………………………6 2-1-1-1 熱彈型麻田散體變態………………………………………...6 2-1-1-2 形狀記憶效應(SME)之機制………………………………..10 2-1-2 擬彈性(PE)效應………………………………………………...13 2-2 TiNi基形狀記憶合金………………………………………………..15 2-2-1 TiNi 二元形狀記憶合金之各相與結晶構造……………………15 2-2-2 TiNi 二元形狀記憶合金之力學特性……………………………17 2-3 軋延製程…………………...………………………………………….21 2-4 再結晶退火……………………………………………………………23 2-5 Ti50Ni50-xPdx高溫形狀記憶合金研究之回顧與探討………………25 第三章 實驗方法及步驟……………………………………………...45 3-1 合金配置及熔煉………………………………………………………45 3-2 輥壓方法及設備………………………………………………………46 3-2-1 熱輥壓……………………………………………………………46 3-2-2 冷輥壓……………………………………………………………48 3-3 再結晶退火熱處理方法及設備………………………………………48 3-4 DSC量測……….……………………………………………………49 3-5 顯微組織觀察…………….…………………...………………………50 3-6 XRD晶體結構分析……………………………………………….…51 3-7 形狀記憶效應實驗……………………………………………………51 3-8掃描式電子顯微鏡(SEM)……………………………………………...52 第四章 實驗結果及討論……………………………………………...59 4-1 Ti50Ni20Pd29.7Cu0.3形狀記憶合金….…………….…...…………...59 4-2 Ti50Ni20Pd30-xCux(x=5、10、15)及Ti50Ni25Pd15Cu10形狀記憶合金………………………………………....…………………………...60 4-2-1 TiNiPdCu SMAs均質化後之DSC測量結果…………………60 4-2-2 TiNiPdCu SMAs冷軋延後經退火處理之DSC測量結果...….62 4-2-2-1 Ti50Ni20Pd25Cu5冷軋延試片..............................................63 4-2-2-2 Ti50Ni20Pd20Cu10冷軋延試片............................................66 4-2-2-3 Ti50Ni20Pd15Cu15冷軋延試片............................................68 4-2-2-4 Ti50Ni25Pd15Cu10冷軋延試片............................................71 4-2-2-5 Ti50Ni20Pd25Cu5與Ti50Ni20Pd20Cu10兩合金之比較......73 4-3 XRD晶體結構分析結果.………………….......……………...……74 4-4 SME實驗結果………………………….……………...………...…75 4-5 顯微組織觀察…………………………………………………..……77 第五章 結論……………………………………………………………...119 參考文獻………………………………………………………………….123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 形狀記憶效應 | zh_TW |
| dc.subject | 高溫形狀記憶合金 | zh_TW |
| dc.subject | TiNiPdCu四元合金 | zh_TW |
| dc.subject | 冷輥壓 | zh_TW |
| dc.subject | 再結晶退火 | zh_TW |
| dc.subject | Annealing | en |
| dc.subject | Shape memory effect | en |
| dc.subject | High temperature shape memory alloys | en |
| dc.subject | TiNiPdCu alloys | en |
| dc.subject | Cold-rolling | en |
| dc.title | Ti50Ni50-XPdX ( X=15∼30 at%)高溫形狀記憶合金中Cu取代Pd之研究 | zh_TW |
| dc.title | The study on Ti50Ni50-x(Pd,Cu)x high temperature shape memory alloys (SMAs) with Pd substituted by Cu | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王文雄,胡塵滌,王建義,林新智 | |
| dc.subject.keyword | 高溫形狀記憶合金,TiNiPdCu四元合金,冷輥壓,再結晶退火,形狀記憶效應, | zh_TW |
| dc.subject.keyword | High temperature shape memory alloys,TiNiPdCu alloys,Cold-rolling,Annealing,Shape memory effect, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2006-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 7.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
